

### Spire STL Pipeline Project

Resource Report 9 Air and Noise Quality

FERC Docket No. CP17-40-\_\_\_

Amendment to FERC Application April 2017

**Public** 



|    | RESOURCE REPORT 9 - GENERAL PROJECT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|
|    | SUMMARY OF FILING INFORMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TION                      |  |  |  |  |  |
|    | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found in                  |  |  |  |  |  |
| 1. | Describe existing air quality in the vicinity of the project. (§ 380.12(k)(1))  • Identify criteria pollutants that may be emitted above U.S. Environmental Protection Agency (USEPA)-identified significance levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sections 9.1.2 and 9.1.3. |  |  |  |  |  |
| 2. | <ul> <li>Quantify the existing noise levels (day-night sound level (Ldn) and other applicable noise parameters) at noise sensitive areas and at other areas covered by relevant state and local noise ordinances. (§ 380.12(k)(2))</li> <li>If new compressor station sites are proposed, measure or estimate the existing ambient sound environment based on current land uses and activities.</li> <li>For existing compressor stations (operated at full load), include the results of a sound level survey at the site property line and nearby noise-sensitive areas.</li> <li>Include a plot plan that identifies the locations and duration of noise measurements.</li> <li>All surveys must identify the time of day, weather conditions, wind speed and direction, engine load, and other noise sources present during each measurement.</li> </ul> | Not applicable.           |  |  |  |  |  |
| 3. | Quantify existing and proposed emissions of compressor equipment plus construction emissions, including nitrogen oxides (NOX) and carbon monoxide (CO), and the basis for these calculations. Summarize anticipated air quality impacts for the project. (§ 380.12(k)(3))  • Provide the emission rate of NO, from existing and proposed facilities, expressed in pounds per hour and tons per year for maximum operating conditions, include supporting calculations, emission factors, fuel consumption rate, and annual hours of operation.                                                                                                                                                                                                                                                                                                               | Sections 9.1.3.           |  |  |  |  |  |



|    | RESOURCE REPORT 9 - GENERAL PROJECT DES                                                                                                                                                                                                                                                                                                 | CRIPTION                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|    | SUMMARY OF FILING INFORMATION                                                                                                                                                                                                                                                                                                           |                               |
|    | Information                                                                                                                                                                                                                                                                                                                             | Found in                      |
| 4. | Describe the existing compressor units at each station where new, additional, or modified compressor units are proposed, including the manufacturer, model number, and horsepower of the compressor units. For proposed new, additional, or modified compressor units include the horsepower, type, and energy source. (§ 380.12(k)(4)) | Not applicable.               |
| 5. | Identify any nearby noise-sensitive area by distance and direction from the proposed compressor unit building/enclosure. (§ 380.12(k)(4))                                                                                                                                                                                               | Not applicable.               |
| 6. | Identify any applicable state or local noise regulations. (§ 380.12(k)(4))  • Specify how the facility will meet the regulations.                                                                                                                                                                                                       | Sections 9.2.1.2 and 9.2.1.3. |
| 7. | Calculate the noise impact at noise-sensitive areas of the proposed compressor unit modifications or additions, specifying how the impact was calculated, including manufacturer's data and proposed noise control equipment. (§ 380.12(k)(4))                                                                                          | Not applicable.               |
|    | INFORMATION RECOMMENDED OR OFTEN N                                                                                                                                                                                                                                                                                                      | NISSING                       |
| 1. | Include climate information as part of the air quality information provided for the project area.                                                                                                                                                                                                                                       | Section 9.1.2.1.              |
| 2. | Identify potentially applicable federal and state air quality regulations.                                                                                                                                                                                                                                                              | Section 9.1.4.                |
| 3. | Provide construction emissions (criteria pollutants, hazardous air pollutants, greenhouse gases) for proposed pipelines and aboveground facilities.                                                                                                                                                                                     | Section 9.1.3.                |
| 4. | Provide copies of state and federal applications for air permits.                                                                                                                                                                                                                                                                       | Not applicable.               |
| 5. | Provide operational and fugitive emissions (criteria pollutants, hazardous air pollutants, greenhouse gases) for pipelines and aboveground facilities.                                                                                                                                                                                  | Section 9.1.3.6               |
| 6. | Provide air quality modeling for entire compressor stations.                                                                                                                                                                                                                                                                            | Not applicable.               |



| RESOURCE REPORT 9 - GENERAL PROJECT DESCRIPTION                                                                                                                                          |                    |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| INFORMATION RECOMMENDED OR OFTEN IN                                                                                                                                                      | MISSING            |  |  |  |  |  |  |
| Information Found in                                                                                                                                                                     |                    |  |  |  |  |  |  |
| 7. Identify temporary and permanent emissions sources that may have cumulative air quality effects in addition to those resulting from the project.                                      | Resource Report 1. |  |  |  |  |  |  |
| 8. Describe the existing noise environment and ambient noise surveys for compressor stations, liquefied natural gas facilities, meter and regulation facilities, and drilling locations. | Section 9.2.3.     |  |  |  |  |  |  |
| Identify any state or local noise regulations applicable to construction and operation of the project                                                                                    | Section 9.2.1.     |  |  |  |  |  |  |
| 10. Indicate whether construction activities would occur over 24-hour periods.                                                                                                           | Section 9.2.4.     |  |  |  |  |  |  |
| 11. Discuss construction noise impacts and quantify construction noise impacts from drilling, pile driving, dredging, etc.                                                               | Section 9.2.3.     |  |  |  |  |  |  |
| 12. Quantify operational noise from aboveground facilities, including blowdowns.                                                                                                         | Section 9.2.3      |  |  |  |  |  |  |
| 13. Describe the potential for the operation of the proposed facilities to result in an increase in perceptible vibration and how this would be prevented.                               | Section 9.2.3      |  |  |  |  |  |  |
| 14. Identify temporary and permanent noise sources that may have cumulative noise effects in addition to those resulting from the project.                                               | Resource Report 1. |  |  |  |  |  |  |

### **Table of Contents**

| Air and Noise | Quality  |                                                                      | 9-1         |
|---------------|----------|----------------------------------------------------------------------|-------------|
| 9.1           | Air Qua  | lity                                                                 | 9-1         |
|               | 9.1.1    | Design Basis                                                         | 9-1         |
|               | 9.1.2    | Existing Conditions                                                  | 9-2         |
|               | 9.1.3    | Project Emissions                                                    | 9-6         |
|               | 9.1.4    | Regulatory Requirements for Air Quality                              | 9-12        |
| 9.2           | Noise Q  | uality                                                               | 9-15        |
|               | 9.2.1    | Regulatory Requirements for Noise                                    | 9-16        |
|               | 9.2.2    | Noise Level Impacts                                                  | 9-19        |
|               | 9.2.3    | Noise Impacts                                                        | 9-20        |
|               | 9.2.4    | Noise Mitigation                                                     | 9-35        |
| 9.3           | Referen  | nces                                                                 | 9-36        |
| Tables        |          |                                                                      |             |
| 9.1-1         | Climate  | Data for St. Charles County Airport, Missouri (1981 to 2010) for the | Project 9-2 |
| 9.1-2         | Yearly L | ocal Ozone Data for West Alton Site                                  | 9-4         |
| 9.1-3         | Yearly L | ocal Ozone Data for Orchard Farm Site                                | 9-5         |
| 9.1-4         | Yearly L | ocal Ozone Data for Illini Junior High Site                          | 9-5         |
| 9.1-5         | Yearly L | ocal PM2.5 Data for Illini Junior High Site                          | 9-6         |
| 9.1-6         | Summa    | ry of Temporary Construction Emissions                               | 9-7         |
| 9.1-6(a)      | Equipm   | ent Type and Fuel Consumptions                                       | 9-8         |
| 9.1-7         | Summa    | ry of Stationary Source Emissions                                    | 9-10        |
| 9.1-8         | Methan   | e to Carbon Dioxide Equivalent for Pipelines and Stations            | 9-11        |
| 9.1-9         | General  | l Conformity Thresholds                                              | 9-15        |
| 9.2-1         | Measur   | ed Ambient Noise Levels                                              | 9-17        |
| 9.2-2         | Noise Q  | uality Analysis for HDD Bore at Mississippi River North Location     | 9-24        |
| 9.2-3         | Noise Q  | uality Analysis for HDD Bore at Mississippi River South Location     | 9-25        |
| 9.2-4         | Noise Q  | uality Analysis for HDD Bore at Missouri River North Location        | 9-27        |
| 9.2-5         | Noise Q  | uality Analysis for HDD Bore at Missouri River South Location        | 9-28        |
| 9.2-6         | Noise Q  | uality Analysis for HDD Bore at Coldwater Creek East                 | 9-30        |
| 9.2-7         | Noise Q  | uality Analysis for HDD Bore at Coldwater Creek West                 | 9-32        |
| 9.2-8         | Noise Q  | uality Analysis for HDD Bore at Spanish Lake Park East               | 9-33        |
| 9.2-9         | Noise Q  | quality Analysis for HDD Bore at Spanish Lake Park West              | 9-34        |

### Appendices

| 9-A | Emission Estimates                 |
|-----|------------------------------------|
| 9-B | Illinois Air Regulations           |
| 9-C | Missouri Air Regulations           |
| 9-D | Pre-Construction Noise Survey Data |
| 9-E | Fugitive Dust Control Plan         |

### **Acronyms and Abbreviations**

AQCR Air Quality Control Region

CAA Clean Air Act

CFR Code of Federal Regulations

CH<sub>4</sub> methane

CO carbon monoxide

CO<sub>2</sub> carbon dioxide

dB decibel

dBA "A" weighting frequency scale

Enable MRT Enable Mississippi River Transmission, LLC

°F degrees Fahrenheit

FERC Federal Energy Regulatory Commission

GHG Greenhouse Gas

GWP global warming potential
HDD horizontal directional drill

IPCC Intergovernmental Panel on Climate Change

Leq Equivalent Sound Level

Ldn Day-Night Level

Ln Night Level

LGC Laclede Gas Company

M&R metering and regulating

MPH miles per hour N<sub>2</sub>O nitrous oxide

NAAQS National Ambient Air Quality Standards

NO<sub>2</sub> Nitrogen Dioxide NOx Nitrogen Oxides

NSA noise sensitive area

NSPS New Source Performance Standards

NSR New Source Review

PM<sub>2.5</sub> particulate matter sized 2.5 microns in aerodynamic diameter and smaller

PM<sub>10</sub> particulate matter sized 10 microns in aerodynamic diameter and smaller

Project Spire STL Pipeline Project

REX Rockies Express Pipeline LLC

scfh standard cubic feet per hour

SO<sub>2</sub> Sulfur Dioxide

Spire STL Pipeline LLC

TPY tons per year

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compounds

### **Air and Noise Quality**

### 9.1 Air Quality

This Resource Report addresses the effects of the Project on the existing air and noise environment and describes proposed measures to mitigate the effects for the Spire STL Pipeline LLC ("Spire") Spire STL Pipeline Project ("Project") within both Illinois and Missouri.

#### 9.1.1 Design Basis

The proposed Project will consist of approximately 65 miles of new, greenfield, 24-inch-diameter steel pipeline in two segments. The first segment (referred to as the "24-inch pipeline" portion of the Project) will originate at a new interconnect with the Rockies Express Pipeline LLC ("REX") pipeline in Scott County, Illinois and extend approximately 59.2 miles through Greene and Jersey Counties in Illinois before crossing the Mississippi River and extending east through St. Charles County, Missouri. The 24-inch pipeline then crosses the Missouri River into St. Louis County, Missouri, and terminates at a new interconnect with Laclede Gas Company ("LGC"). The second segment of new, greenfield pipeline (referred to as the "North County Extension"), will consist of a 24-inch-diameter steel pipeline which will extend approximately six miles from the LGC interconnect through the northern portion of St. Louis County and terminate at a new interconnect with Enable Mississippi River Transmission, LLC ("Enable MRT") and LGC. The total length of the Project pipeline will be approximately 65 miles. The overall design capacity of the Project pipeline is expected to be 400,000 dekatherms per day. No compression will be required. The Project also includes the construction of three new metering and regulating ("M&R") stations that provide interconnects with (1) REX in Illinois, (2) LGC in Missouri, and (3) Enable MRT and LGC in Missouri.

Fuel burning equipment associated with the construction of the 24-inch pipeline, North County Extension, and associated aboveground facilities (i.e., pipeline heaters) is discussed below.

As more fully explained in Resource Report 1, a primary purpose of the Project is to provide enhanced reliability and diversity of supply and pipeline capacity to support existing natural gas end use needs. As such, the natural gas transported on the Project for its Foundation Shipper, LGC, is anticipated to be used in the same manner as its current gas supply portfolio, to serve LGC's existing retail gas utility customers. Approximately 70 percent of LGC's utility gas supply is currently used for home and space heating needs of residential customers, and the remaining 30 percent is used for commercial and industrial purposes. The majority of the natural gas transported on Spire's pipeline for LGC is anticipated to supply these same downstream uses. With the introduction of additional, competitively priced, natural gas supply access into the greater St. Louis/eastern Missouri region, however, there will also be the opportunity for increased use of natural gas, as opposed to other fossil fuels, by LGC's industrial customers with duel boiler fuel capability, thereby reducing Greenhouse Gas ("GHG") emissions.



An additional planned benefit of the Project is for LGC to be able to replace its historical reliance on liquid propane for winter peaking support with natural gas, which has cost, reliability, and environmental advantages over liquid propane. The actual displacement of liquid propane with natural gas is not anticipated to be significant, however, given that this peakshaving need arises only on the coldest winter days.

As also discussed in Resource Report 1, 12.5 percent of the firm capacity to be created by the Project is as yet unsubscribed. Accordingly, this new capacity will offer the opportunity for other end users in the region, including electric generators, to switch to natural gas from other fossil fuels and thereby lower GHG emissions in the greater St. Louis and southern Illinois areas.

#### 9.1.2 Existing Conditions

#### 9.1.2.1 Local Climate

The 24-inch pipeline is located in western Illinois and generally runs from north to south and crosses the Mississippi River, then parallels the Mississippi River until crossing the Missouri River just north of St. Louis, Missouri which is the nearest large city. This area is flat with the majority of the Project area being located on land in agricultural use in the upper Mississippi River Valley. The climate of this area is best classified as a Mid-latitude Continental which has warm summers and cold winters. Summer temperatures in this area are typically in the upper 80s [degrees Fahrenheit (°F)] while winter temperatures are typically in the lower 40s. Prevailing winds are usually from the northeast. Average annual precipitation totals are approximately 41 inches. There are several surface weather stations located near the Project area all with statistically equivalent data and located in areas with high agricultural use. The St. Charles County Airport located in St. Charles County, Missouri was used as the representative station for the Project area. A summary of climate data collected at this station is provided in Table 9.1-1.

Table 9.1-1. Climate Data for St. Charles County Airport, Missouri (1981 to 2010) for the Project

|           | Average Maximum  | Average Minimum  | Average          |                        |
|-----------|------------------|------------------|------------------|------------------------|
| Month     | Temperature (°F) | Temperature (°F) | Temperature (°F) | Precipitation (inches) |
| January   | 39               | 21               | 30               | 2.36                   |
| February  | 44               | 26               | 35               | 2.24                   |
| March     | 55               | 35               | 45               | 3.23                   |
| April     | 67               | 45               | 56               | 3.82                   |
| May       | 76               | 55               | 65.5             | 4.76                   |
| June      | 85               | 64               | 74.5             | 4.29                   |
| July      | 89               | 68               | 78.5             | 4.33                   |
| August    | 88               | 66               | 77               | 3.15                   |
| September | 80               | 56               | 68               | 3.27                   |
| October   | 68               | 44               | 56               | 3.39                   |
| November  | 55               | 35               | 45               | 3.82                   |
| December  | 42               | 25               | 33.5             | 2.80                   |

Note: Data sourced from United States Climate Data: http://www.usclimatedata.com/climate/portage-des-sioux/missouri/united-states/usmo1709

The United States Environmental Protection Agency ("USEPA") has established National Ambient Air Quality Standards ("NAAQS") for seven pollutants:

- sulfur dioxide ("SO<sub>2</sub>");
- carbon monoxide ("CO");
- nitrogen dioxide ("NO<sub>2</sub>");
- inhalable particulate matter ("PM") [i.e., PM sized 10 microns in aerodynamic diameter and smaller (PM<sub>10</sub>)];
- fine PM [i.e., PM sized 2.5 microns in aerodynamic diameter and smaller (PM<sub>2.5</sub>)] excluding regulated precursors for PM<sub>2.5</sub>, which are addressed by their own standards;
- lead; and
- ozone [for which nitrogen oxides ("NOx") and volatile organic compounds ("VOCs") are regulated as precursors].

#### 9.1.2.2 National Ambient Air Quality Standards

The Clean Air Act of 1970 ("CAA") (Title 42 United States Code § 7401 et seq.) required the USEPA to establish NAAQS to protect public health and welfare.

Revisions to Section 107 of the CAA in 1977 required the states/commonwealths and USEPA to identify areas of the country which meet and do not meet the NAAQS. Areas meeting the NAAQS are called "attainment areas," and areas not meeting the NAAQS are called "nonattainment areas." The designation of an area is made on a pollutant-by-pollutant basis.

The USEPA maintains a list of attainment/non-attainment designations for all seven criteria pollutants on their "Green Book" website (USEPA, 2014). The Green Book was used to determine the area designations for the proposed Project area. The USEPA also designates areas where communities that are in close proximity to one another and share a common air quality as Air Quality Control Regions ("AQCRs").

In the Project area there is only one AQCR that has a designation of non-attainment; the Metropolitan St. Louis Interstate AQCR (Missouri-Illinois) consists of the territorial area encompassed by the boundaries of the following jurisdictions:

- in the State of Illinois Bond County, Clinton County, Madison County, Monroe County, Randolph County, St. Clair County, Washington County; and
- in the State of Missouri Franklin County, Jefferson County, St. Charles County, St. Louis City, St. Louis County.

The Project is located in both St. Charles and St. Louis Counties; otherwise, the rest of the counties in the Project area are designated as being in attainment for all pollutants and are not designated as maintenance areas. The Metropolitan St. Louis Interstate AQCR is designated as non-attainment for both Ozone (Marginal, eight-hour Ozone 2008) and PM<sub>2.5</sub> (Moderate, PM<sub>2.5</sub> 1997). Further discussion is provided in Section 9.1.4.2, General Conformity.



Additionally, Jersey County in Illinois was designated as a maintenance area for Ozone in 2012.

Of the 24-inch pipeline, 16.1 miles will be located in Jersey County, Illinois. Within the Metropolitan St. Louis Interstate AQCR, 12.8 miles of the 24-inch pipeline will be located in St. Charles County, Missouri and 0.7-mile of the 24-inch pipeline will be located in St. Louis County, Missouri. Six miles of the North County Extension is in St. Louis County, Missouri and the Metropolitan St. Louis Interstate AQCR.

Within the Project area, there are several existing, operational monitoring locations collecting data related to criteria air pollutants. This information is presented to provide background levels for these criteria pollutants. This data represents the latest, publicly available data from the USEPA and, therefore, note that it may be raw and invalidated.

Three active monitoring locations have been identified near the Project area (e.g., within counties where the proposed pipeline would be constructed). These are monitors 29-183-1004 (St. Charles County, Missouri), 29-183-1002 (St. Charles County, Missouri), and 17-083-1001 (Jersey County, Illinois), and are described in Tables 9.1-2, 9.1-3, 9.1-4, and 9.1-5.

Table 9.1-2. Yearly Local Ozone Data for West Alton Site

| Location:       | General Electric Store, I   | Highway 94, St. Charles County, | Missouri 63386                    |  |  |  |
|-----------------|-----------------------------|---------------------------------|-----------------------------------|--|--|--|
| Pollutants Moni | tored: Active O3            |                                 |                                   |  |  |  |
| Status:         | Active                      |                                 |                                   |  |  |  |
| Monitor ID:     | 29-183-1002                 |                                 |                                   |  |  |  |
| Year            | Maximum<br>One-Hour Average | Maximum<br>Eight-Hour Average   | Fourth Maximum Eight-Hour Average |  |  |  |
| 2016            |                             | No Data Available               |                                   |  |  |  |
| 2015            | 0.087                       | 0.072                           | 0.070                             |  |  |  |
| 2014            | 0.092                       | 0.078                           | 0.072                             |  |  |  |

Note:

Data sourced from https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download files.html#Annual



Table 9.1-3. Yearly Local Ozone Data for Orchard Farm Site

| Location:     | 2165 Highway V, St. Ch      | narles County, Missouri 63301 |                                      |
|---------------|-----------------------------|-------------------------------|--------------------------------------|
| Pollutants Mo | nitored: Active O3          |                               |                                      |
| Status:       | Active                      |                               |                                      |
| Monitor ID:   | 29-183-1004                 |                               |                                      |
| Year          | Maximum<br>One-Hour Average | Maximum<br>Eight-Hour Average | Fourth Maximum<br>Eight-Hour Average |
| 2016          |                             | No Data Available             |                                      |
| 2015          | 0.085                       | 0.078                         | 0.066                                |
| 2014          | 0.087                       | 0.740                         | 0.720                                |

#### Note:

Data sourced from https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download\_files.html#Annual

Table 9.1-4. Yearly Local Ozone Data for Illini Junior High Site

| Location: Liberty Street and County Road, Jersey County, Illinois |                             |                               |                                      |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------|-------------------------------|--------------------------------------|--|--|--|--|
| Pollutants Monitored: Active O3, PM <sub>2.5</sub>                |                             |                               |                                      |  |  |  |  |
| Status: Active                                                    |                             |                               |                                      |  |  |  |  |
| Monitor ID: 17-083-1001                                           |                             |                               |                                      |  |  |  |  |
| Year                                                              | Maximum<br>One-Hour Average | Maximum<br>Eight-Hour Average | Fourth Maximum<br>Eight-Hour Average |  |  |  |  |
| 2016 (through 6/7/16                                              | 6) 0.055                    | 0.050                         | 0.042                                |  |  |  |  |
| 2015                                                              | 0.091                       | 0.074                         | 0.067                                |  |  |  |  |
| 2014                                                              | 0.089                       | 0.071                         | 0.065                                |  |  |  |  |

#### Note:

Data sourced from https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download\_files.html#Annual



Table 9.1-5. Yearly Local PM2.5 Data for Illini Junior High Site

| Location: Liberty Street and County Road, Jersey County, Illinois |                          |                    |                   |  |  |  |  |
|-------------------------------------------------------------------|--------------------------|--------------------|-------------------|--|--|--|--|
| Pollutants Monitored: Activ                                       | ve O3, PM <sub>2.5</sub> |                    |                   |  |  |  |  |
| Status: Activ                                                     | ve                       |                    |                   |  |  |  |  |
| <b>Monitor ID</b> : 17-083-1001                                   |                          |                    |                   |  |  |  |  |
| Year                                                              | Daily Arithmetic Mean    | Maximum Daily Mean | Fourth Daily Mean |  |  |  |  |
| 2016 (through 6/7/16)                                             | 7.448                    | 20.0               | 18.2              |  |  |  |  |
| 2015                                                              | 7.714                    | 28.7               | 16.6              |  |  |  |  |
| 2014                                                              | 10.002                   | 25.5               | 17.9              |  |  |  |  |

Note:

Data sourced from https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download\_files.html#Annual

#### 9.1.3 Project Emissions

#### 9.1.3.1 Construction Emissions

Construction activities will result in temporary increases in emissions of some pollutants due to the use of non-stationary equipment powered by diesel fuel or gasoline engines; the temporary generation of fugitive dust due to disturbance of the ground surface, vegetation clearing, and other dust generating actions; and indirect emissions attributable to activities associated with construction activities of the Project (e.g., workers commuting to and from work sites during construction, etc.).

These sources are not considered stationary sources and their impacts will generally be temporary and localized. Moreover, the emissions from construction activities are not expected to cause or significantly contribute to an exceedance of the NAAQS.

The installation and construction of the Project is estimated to begin in January 2018 with completion estimated by November 2018. To date, this Project has not been awarded to a contractor and the exact equipment to be used on-site for construction is not known. The equipment anticipated to be used on this Project and the operating hours for each piece of equipment was estimated based upon similar projects of similar size. As such, the emissions provided in Table 9.1-6 are believed to represent a conservative best available estimate of construction emissions for the Project. Actual emissions from the Project will vary by day and type of construction activity. An estimation of these individual activities (e.g., construction engine emissions and fugitive dust emissions) involving construction of the pipelines has been included in this analysis.

**Table 9.1-6. Summary of Temporary Construction Emissions** 

|                                                                                              | Criteria Pollutants (TPY) |                   |       |       |      | GHGs <sup>1</sup> (TPY) |                 |      | CO2e            |                                 |
|----------------------------------------------------------------------------------------------|---------------------------|-------------------|-------|-------|------|-------------------------|-----------------|------|-----------------|---------------------------------|
| Description                                                                                  | PM <sub>10</sub>          | PM <sub>2.5</sub> | VOCs  | со    | SO2  | NOx                     | CO <sub>2</sub> | N₂O  | CH <sub>4</sub> | (metric<br>tonnes) <sup>1</sup> |
| Off-Road Engines - New Build                                                                 | 12.72                     | 12.34             | 16.17 | 72.80 | 0.34 | 231.27                  | 13,561.15       | 0.76 | 5.23            | 12,626.50                       |
| Off-Road Engines - North County Extension                                                    | 2.14                      | 2.07              | 2.97  | 12.80 | 0.02 | 41.92                   | 1,244.72        | 0.07 | 0.48            | 1,158.93                        |
| Unpaved Roads - New Build                                                                    | 11.83                     | 1.18              | 0.00  | 0.00  | 0.00 | 0.00                    | 0.00            | 0.00 | 0.00            | 0.00                            |
| Unpaved Roads - North County Extension                                                       | 1.97                      | 0.20              | 0.00  | 0.00  | 0.00 | 0.00                    | 0.00            | 0.00 | 0.00            | 0.00                            |
| Material Handling and Wind Erosion - New Build                                               | 1.03                      | 0.51              | 0.00  | 0.00  | 0.00 | 0.00                    | 0.00            | 0.00 | 0.00            | 0.00                            |
| Material Handling and Wind Erosion - North County Extension                                  | 0.27                      | 0.19              | 0.00  | 0.00  | 0.00 | 0.00                    | 0.00            | 0.00 | 0.00            | 0.00                            |
| Total Project Pipeline Emissions                                                             | 29.95                     | 16.50             | 19.14 | 85.60 | 0.35 | 273.19                  | 14,805.87       | 0.83 | 5.71            | 13,785.43                       |
| Total Emissions Metropolitan St. Louis<br>Interstate Air Quality Control Region <sup>2</sup> | 10.21                     | 5.66              | 6.65  | 29.40 | 0.09 | 94.66                   | 4,337.21        | 0.24 | 1.67            | 4,038.29                        |
| Total Emissions Jersey County, Illinois Maintenance Area <sup>2</sup>                        | 6.96                      | 3.82              | 4.40  | 19.80 | 0.09 | 62.90                   | 3,688.08        | 0.21 | 1.42            | 3,433.90                        |
| Total Emissions non-attainment and Maintenance Areas <sup>2</sup>                            | 17.16                     | 9.48              | 11.05 | 49.20 | 0.18 | 157.56                  | 8,025.30        | 0.45 | 3.10            | 7,472.18                        |

#### Notes:

<sup>&</sup>lt;sup>1</sup> Greenhouse gas emissions were adjusted for global warming potential ("GWP"), using GWP factors of 298 for N₂O and 25 for methane ("CH₄"). Additionally, greenhouse gas emissions were converted from short tons to metric tonnes.

All of the North County Extension is located in the Metropolitan St. Louis Interstate Air Quality Control Region, while 13.5 miles of the 24-inch pipeline is located in the Metropolitan St. Louis Interstate Air Quality Control Region; moreover, 16.1 miles of the 24-inch pipeline is located within Jersey County, Illinois which is a maintenance area for ozone. Therefore, emissions for the 24-inch pipeline in these areas are adjusted for this mileage.



Table 9.1-6(a). Equipment Type and Fuel Consumptions

| Equipment             | Туре                         | Fuel Consumption                                       | 24-Inch<br>Pipeline<br>Quantity | North<br>County<br>Extension | M&R<br>Facilities<br>(each) |
|-----------------------|------------------------------|--------------------------------------------------------|---------------------------------|------------------------------|-----------------------------|
| Excavator             | CAT 336                      | 5 to 8 Gallons/Hour                                    | 30                              | 5                            | 1                           |
| Side Boom Tractor     | CAT 573                      | 2 to 5 Gallons/Hour                                    | 30                              | 5                            |                             |
| Bulldozers            | CAT D7 or CAT D8             | 5 to 10 Gallons/Hour                                   | 20                              | 3                            | 1                           |
| Low Boy Trucks        | 200 HP                       | 6 Miles/Gallon                                         | 5                               | 4                            | 2                           |
| Contractor Trucks     | ½-Ton Pickup Truck           | 14 Miles/Gallon                                        | 30                              | 5                            | 12                          |
| Inspector Trucks      | ½-Ton Pickup Truck           | 14 Miles/Gallon                                        | 20                              | 3                            |                             |
| Surveyor Trucks       | ½-Ton Pickup Truck           | 14 Miles/Gallon                                        | 5                               | 2                            |                             |
| Welder Rigs           | 1-Ton                        | 8 Miles/Gallon (truck) and<br>1.1-Gallon/Hour (welder) | 10                              | 3                            | 1                           |
| Boom Trucks           | 5-Ton                        | 6 Miles/Gallon                                         | 3                               | 1                            |                             |
| Fuel Trucks           | 5-Ton                        | 6 Miles/Gallon                                         | 2                               | 1                            |                             |
| Water Trucks          | 5-Ton                        | 6 Miles/Gallon                                         | 2                               | 1                            |                             |
| Water Pumps           | 5 HP                         | 0.5-Gallon/Hour                                        | 10                              | 3                            |                             |
| Air Compressors       | 25 HP                        | 0.5-Gallon/Hour                                        | 10                              | 3                            | 1                           |
| Portable Light Plant  | 25 HP                        | 1 Gallon/Hour                                          | 10                              | 3                            |                             |
| Employee Vehicles     | ½-Ton Pickup Trucks and Cars | 14 mpg and 20 mpg                                      | 75                              | 12                           |                             |
| Pipe Stringing Trucks | 200 HP                       | 6 Miles/Gallon                                         | 5                               | 2                            |                             |
| HDD Rig               | 600 HP                       | 25 Gallons/Hour                                        | 2                               | 2                            |                             |
| Mud Pumps             | 25 HP                        | 10 Gallons/Hour                                        | 4                               | 2                            |                             |
| R/W Mowing Tractors   | 75 HP                        | 5 Gallons/Hour                                         | 5                               |                              |                             |
| Tree Cutting Hot Saw  | 200 HP                       | 5 to 8 Gallons/Hour                                    | 2                               | 1                            |                             |
| Crane                 | Grove 300T Hydraulic (550HP) | 18 to 20 Gallons/Hour                                  |                                 |                              | 1                           |
| Carry Deck Loader     | 15-ton                       | 3 Gallons/Hour                                         |                                 |                              | 1                           |
| Generator             | 10 HP                        | 1 Gallon/Hour                                          |                                 |                              | 2                           |
| Backhoe               | CAT 416F, 90 HP              | 5 Gallons/Hour                                         |                                 |                              | 1                           |
| Mini Excavator        | 25 HP                        | 1 Gallon/Hour                                          |                                 |                              | 2                           |
| Dump Trucks           | 16 Yard Bed, 300 HP          | 1 Gallon/Hour                                          |                                 |                              | 2                           |

#### **9.1.3.2 Construction Engine Emissions**

Construction related emission estimates are based on a typical construction equipment list, hours of operation, and vehicle miles traveled by the construction equipment and supporting vehicles for the Project. This is a conservative estimate based on worst-case assumptions, Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition, NR-009c (EPA420-P-04-009), April 2004 (Tables 9A-1 and 9A-2 in Appendix 9-A), and the USEPA and Intergovernmental Panel on Climate Change ("IPCC") emission factors

(Tables 9A-7 and 9A-8 in Appendix 9-A). Nevertheless, the estimated air emissions from construction of the Project is expected to be transient in nature, with negligible impact on the baseline regional air quality. Construction equipment will be properly maintained and operated only on an as-needed basis to minimize the construction engine emissions. There will also be some emissions attributable to vehicles delivering materials to the construction sites. For the purposes of this estimate, it was assumed that all non-road engines were either Tier 2 (2001 through 2006) or Tier 3 (2006 through 2008), except for Side Booms, Water Trucks, and horizontal directional drill ("HDD") rigs which are assumed to be Tier 0, with relation to emissions standards.

Table 9A-1 and Table 9A-2 in Appendix 9-A summarize the estimated emissions of criteria pollutants from construction equipment and PM emissions from material transfers and road traffic, respectively. Emissions from non-road construction equipment engines used during construction were estimated based on the anticipated types of non-road equipment and their associated levels of use. Emission factors in grams per HP-hour were obtained from Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition. Greenhouse gas emissions where estimated using emission factors from IPCC Guidelines for National Greenhouse Gas Inventories and are summarized in Tables 9A-7 and 9A-8 (IPCC 2006).

#### 9.1.3.3 Fugitive Dust Emissions

Fugitive dust will result from land clearing, grading, excavation, concrete work, and vehicle traffic on paved and unpaved roads. The majority of particulate air emissions produced during construction activities will be  $PM_{10}$  and  $PM_{2.5}$  in the form of fugitive dust. The amount of dust generated will be a function of construction activity, soil type, soil moisture content, wind speed, precipitation, vehicle traffic, vehicle types, and roadway characteristics. Emissions will be greater during dry periods and in areas of fine textured soils subject to surface activity. Potential PM emissions from material transfers, wind erosion, and unpaved/paved road were estimated using USEPA's PM AP-42 emissions factors. An estimation of fugitive emissions for the PM roject is provided in Tables PM at PM and PM are PM royally PM and PM are PM royally PM and PM royally PM and PM royally PM are PM royally PM and PM royally PM royally PM and PM royally PM ro

Spire will employ proven construction-related practices to control and limit releases of fugitive dust, including the application of water or other commercially available dust control agents on unpaved areas subject to frequent vehicle traffic in accordance with the Fugitive Dust Control Plan for the Project in Appendix 9-E. In addition, construction equipment will only be operated on an as needed basis.

#### 9.1.3.4 Open Burning Emissions

Spire is not proposing open burning as a means of disposing of land clearing waste during construction.

#### 9.1.3.5 Stationary Source Emissions

Spire is proposing to install two 9.8 MMBtu/hr line heaters at the Laclede/Lange Delivery Station. Anticipated operational emissions for the line heaters can be estimated as shown in Table 9.1-7.



**Table 9.1-7. Summary of Stationary Source Emissions** 

| Source                                 |                              | Line Heater |            |  |
|----------------------------------------|------------------------------|-------------|------------|--|
| Number                                 |                              | 2           |            |  |
| Rated Capacity (MMBtu/ho               | our each)                    | 9.80        |            |  |
| Rated Capacity (MMBtu/ho               | our total)                   | 19.60       |            |  |
| Heating Value (MMBtu/scf               |                              | 1,016       |            |  |
| Capacity (10 <sup>6</sup> scf/hour)    |                              | 0.019291    |            |  |
| Potential Operating Hours              |                              | 8,760       |            |  |
| Total Emissions                        |                              |             |            |  |
|                                        | Emission Factor <sup>1</sup> | 1 Emissions |            |  |
| Pollutant                              | (lb/10 <sup>6</sup> scf)     | lb/hr       | tpy        |  |
| PM Total <sup>2</sup>                  | 7.6                          | 0.147       | 0.642      |  |
| NO <sub>x</sub>                        | 100                          | 1.929       | 8.450      |  |
| СО                                     | 84                           | 1.620       | 7.098      |  |
| VOC                                    | 5.5                          | 0.106       | 0.465      |  |
| CO <sub>2</sub>                        | 120,000                      | 2,314.961   | 10,139.528 |  |
| CH <sub>4</sub>                        | 2.3                          | 0.044       | 0.194      |  |
| N <sub>2</sub> O                       | 0.25                         | 0.005       | 0.021      |  |
| CH <sub>4</sub> (as CO <sub>2</sub> e) | 2.3                          | 1.109       | 4.859      |  |
| NO (as CO₂e)                           | 0.25                         | 1.437       | 6.295      |  |

#### Notes:

Data sourced from USEPA (1998) AP-42: Compilation of Air Emission Factors, Chapter 1.4 Natural Gas Combustion.

- <sup>1</sup> Assume  $PM_{10} = PM$  Total.
- Tons CH<sub>4</sub> converted to Tons CO<sub>2</sub>e by multiplying by 25 Under 10 CSR 10-6.061 Construction.

Permit Exemptions for Missouri, combustion equipment is exempt from requiring a permit under 10 CSR 10-6.060 if the following conditions met by:

• the equipment emits only combustion products, and the equipment produces less than 150 pounds per day of any air contaminant [10 CSR 10-6.061 (3)(A)(1)]; and



• combustion equipment using exclusively natural gas or liquefied petroleum gas or any combination of these with a capacity of less than 10 million British thermal units per hour heat input [10 CSR 10-6.061 (3)(A)(1)(A)]

Based on this section of 10 CSR 10-6.061, these units at 9.8 MMBTU/ea and firing exclusively natural gas would be exempted from requiring an air permit.

#### 9.1.3.6 Fugitive Emissions of Methane

Conservatively, anticipated operational fugitive emissions for the proposed pipeline (24-inch pipeline, North County Extension, and new M&R Stations) of methane can be estimated as shown in Table 9.1-8.

Table 9.1-8. Methane to Carbon Dioxide Equivalent for Pipelines and Stations

| Total Miles of Protected Steel Pipeline                                | 65                                   |
|------------------------------------------------------------------------|--------------------------------------|
| Protected Steel Pipeline CH <sub>4</sub> Emission Factor <sup>3</sup>  | 358.7 scf CH <sub>4</sub> /year/mile |
| Total Protected Steel Pipeline Fugitive CH <sub>4</sub> Emissions/Year | 0.6 tons                             |
| Total Protected Steel Pipeline Fugitive CO₂e Emissions/Year            | 15.4 tons                            |
| Number of Metering/Regulation/Pigging Stations                         | 3                                    |
| Station CH <sub>4</sub> Emission Factor <sup>1</sup>                   | 21.8 tons/year/station               |
| Total Station Fugitive CH <sub>4</sub> Emissions/Year                  | 65.3 tons                            |
| Total Station Fugitive CO₂e Emissions/Year²                            | 1631.3 tons                          |
| Total Project Fugitive CH <sub>4</sub> Emissions/Year                  | 65.9 tons                            |
| Total Project Fugitive CO₂e Emissions/Year <sup>4</sup>                | 1646.6 tons                          |

#### Notes:

- American Petroleum Institute (2009) Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry: Table 5-26.
- USEPA (2014) Code of Federal Regulations, Title 40, Part 98, Chapter I, Subchapter C, Subpart A, Table A-1
   Global Warming Potentials.
- American Petroleum Institute (2009) Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry: Table C-24.
- <sup>4</sup> Tons CH4 converted to Tons CO2e by multiplying by 25.

These fugitive emissions come from a variety of sources including connections and line segment blowdowns.

For the Project, engineering design and operational measures will be evaluated to minimize fugitive and episodic CH<sub>4</sub> emissions. These measures represent the most efficient design with the least environmental impact while providing reliable pipeline operation. These measures include:



- pumping down the pressure of lines to as low a pressure as possible using inline compression prior to blowdown for maintenance; and
- installing low-leak fugitive components, where practicable

Spire is intending to participate in the USEPA's Methane Challenge Program.

#### 9.1.3.7 Greenhouse Gas Mandatory Reporting Rule

The GHG Mandatory Reporting Rule, at 40 Code of Federal Regulations ("CFR") Part 98 (Subpart W), requires certain facilities that emit 25,000 metric tons or more of CO<sub>2</sub> per year to report annual emissions of specified GHGs from various processes within the facility and conduct associated monitoring. Onshore natural gas transmission pipeline industry segments are included in this requirement only if they emit 25,000 metric tons per year or more of emissions from activities under §98.232(m). This relates to pipeline blowdown CO<sub>2</sub> and CH<sub>4</sub> emissions from blowdown vent stacks.

Based on Table 9.1-8 in Section 9.1.3.6 of this report, this Project will not result in emissions equal to, or in excess of, this threshold. Therefore, the GHG Mandatory Reporting Rule does not apply.

#### 9.1.3.8 Odorization Equipment

Odorization equipment will be located at one M&R station along the Project (Laclede/Lange Delivery Station). The potential for odorant release is very low during normal operations of a natural gas M&R facility. Industry accepted procedures and equipment will be utilized to minimize operational-required releases of odorized gas and fugitive emissions will be mitigated by filtering through activated charcoal filters. Additionally, the odorization equipment located at the M&R station will be regularly maintained to ensure proper functioning.

#### 9.1.3.9 Leak Detection

Spire to perform leak detection and maintenance as described in Section 1.4 of Resource Report 1.

#### 9.1.4 Regulatory Requirements for Air Quality

The provisions of the CAA that are potentially applicable to construction and operation of the new facilities associated with the Project are:

- New Source Performance Standards ("NSPS");
- State Regulations; and
- Conformity of General Federal Actions.

Provisions under the New Source Review ("NSR") permitting program National Emission Standards for Hazardous Air Pollutants, Greenhouse Gas Mandatory Reporting Rule, and the Title V Operating Permit program are not applicable to the Project. The following is a brief description of the potentially applicable regulations and their requirements.



#### 9.1.4.1 NSPS

NSPS in 40 CFR Part 60 regulate emissions from new emissions sources from specific source categories. The majority of the source categories cover emission sources that are not associated with the equipment being installed as part of the Project; however, recent updates to Subpart OOOO - Crude Oil and Natural Gas Production Transmission and Distribution) know as Subpart OOOOa do potentially apply.

### <u>Subpart OOOOa - Standards of Performance for Crude Oil and Natural Gas: Production, Transmission, and Distribution</u>

On August 18, 2015, the USEPA proposed amendments to 40 CFR 60, Subpart OOOO and proposed an entirely new Subpart OOOOa, which was published to the Federal Register on September 18, 2015. On August 2, 2016 this new subpart went into effect; therefore, Subpart OOOOa will apply to oil and natural gas production, transmission, and distribution affected facilities that are constructed, reconstructed, and modified after the Federal Register date of September 18, 2015. The proposed NSPS Subpart OOOOa would establish standards for both VOC and CH<sub>4</sub>. In all cases, natural gas is used as a surrogate for both CH<sub>4</sub> and VOC. Subpart OOOOa will affect additional sources at the proposed facilities beyond Subpart OOOO. Many of the requirements of this subpart are applicable to natural gas processing plants and compressor stations. Continuous bleed natural gas-driven pneumatic controllers that are located on a natural gas transmission systems are limited to natural gas bleed rates of six standard cubic feet per hour ("scfh"). However, the rule does allow for the use of a natural gas bleed rate greater than six scfh if it can be demonstrated that the functional needs of the control are required due to but not limited to response time, safety and positive actuation. For continuous bleed natural gas-driven pneumatic controllers that seek to make this justification there are tagging and recordkeeping requirements.

#### 9.1.4.2 General Conformity

Section 176 of the 1990 CAA Amendments required the USEPA to promulgate rules to make certain federal actions conform to the applicable state implementation plan. These rules, known together as the General Conformity Rule (40 CFR 93, Subpart B), require any federal agency responsible for an action in a non-attainment or maintenance area for any criteria pollutant to determine if the action conforms with the applicable state implementation plan or is exempt from the General Conformity Rule requirements.

The USEPA amended the General Conformity rule in 2010 (Federal Register, Volume 75, Number 64, April 5, 2010). As amended, emissions regulated by a permit issued under minor or major NSR are exempted from a General Conformity applicability analysis. Previously, only major NSR permit emissions were excluded.

General Conformity currently applies to areas designated as non-attainment or maintenance for ozone under the 1997 and 2008 eight-hour ozone NAAQS. To remove the complexity of having to address requirements under two ozone NAAQS, the USEPA published the "Implementation of the 2008 NAAWS for Ozone: State Implementation Plan Requirements - Proposed Rule" in the Federal Register on June 6, 2013.

The proposed rule provides that all requirements, including General Conformity, will not apply to areas designated as non-attainment or maintenance for the 1997 ozone NAAQS when that NAAQS is revoked. The 1997 ozone NAAQS will be revoked upon publication of the final rule. The public comment period for the proposed rule ended

August 5, 2013 and the final rule has not been promulgated to date. Until the USEPA publishes the final rule, requirements to address General Conformity under the 1997 eight-hour ozone NAAQS continue to apply alongside the 2008 eight-hour ozone NAAQS.

A General Conformity analysis consists of two steps. The first step is an applicability analysis where estimated Project emissions from construction and operation (with emission sources covered by a permit excluded) are compared to de minimis thresholds defined in the General Conformity Rule. Step two, a General Conformity determination, is required for each pollutant where the total of direct and indirect emissions caused by a federal action (such as a FERC action) would equal or exceed de minimis levels as specified in 40 CFR Part 93.153 with the exceptions specified in 40 CFR Part 51.853(c), (d), or (e). General Conformity does not apply to federal actions in attainment areas or unclassifiable/attainment areas.

For ozone non-attainment areas, emissions of VOC and NOx are evaluated because they are precursor pollutants to ozone formation. For  $PM_{2.5}$  non-attainment areas, emission of NOx and  $SO_2$  are evaluated (in addition to direct  $PM_{2.5}$ ) because they are precursor pollutants to  $PM_{2.5}$  formation. Project activities in Counties belonging to the same non-attainment area or area under maintenance are assumed to contribute cumulatively to the non-attainment or maintenance area. During the applicability analysis, estimated emissions within non-attainment and maintenance areas are compared against preset threshold levels per 40 CFR Section 93.153. The applicability thresholds vary, depending on the severity of the non-attainment area. De minimis emissions are total direct and indirect emissions of a criteria pollutant caused by a federal action in a non-attainment or maintenance area at rates less than the specified applicability thresholds. These thresholds are presented in Table 9.1-9.

The emissions for the Project in designated non-attainment or maintenance areas are below these thresholds, as previously shown in Table 9.1-6. The St. Louis Interstate AQCR is designated as "Other ozone non-attainment areas outside an Ozone Transport Region" for Ozone, thus the General Conformity Thresholds for VOC and NOx are 100 TPY. VOC emissions are 6.52 TPY and NOx emissions are 92.71 TPY (Table 9.1-6) during construction, placing it below the General Conformity thresholds.

#### 9.1.4.3 Air Quality Modeling Analysis

An air quality modeling analysis is not provided as part of this resource report.

#### 9.1.4.4 State-Specific Air Regulations

Illinois and Missouri both have state-specific air quality regulations. Illinois regulations can be found in Title 35 of the Illinois Administrative Code, Subtitle B. Missouri regulations can be found in Division 10 of the Missouri Code of Regulations, Chapter 6. More detailed descriptions of potentially applicable Illinois and Missouri state-specific air regulations can be found in Appendices B and C, respectively.



Table 9.1-9. General Conformity Thresholds

| Pollutant/Non-Attainment Area                                      | ТРҮ |
|--------------------------------------------------------------------|-----|
| Ozone (VOCs or NOx)                                                |     |
| Serious Non-Attainment Areas                                       | 50  |
| Severe Non-Attainment Areas                                        | 25  |
| Extreme Non-Attainment Areas                                       | 10  |
| Other Ozone Non-Attainment Areas outside an Ozone Transport Region | 100 |
| Other Ozone Non-Attainment Areas inside an Ozone Transport Region  |     |
| VOC                                                                | 50  |
| NOx                                                                | 100 |
| CO <sub>2</sub> (all non-attainment areas)                         | 100 |
| SO <sub>2</sub> or NO <sub>2</sub> (all non-attainment areas)      | 100 |
| PM <sub>10</sub>                                                   |     |
| Moderate Non-Attainment Areas                                      | 100 |
| Serious Non-Attainment Areas                                       | 70  |
| PM <sub>2.5</sub>                                                  |     |
| Direct Emissions                                                   | 100 |
| SO <sub>2</sub>                                                    | 100 |
| NOx (unless determined not to be a significant precursor)          | 100 |
| VOC or Ammonia (if determined to be significant precursors)        | 100 |
| Lead (all non-attainment areas)                                    | 25  |

Source: 40 CFR §93.153.

### 9.2 Noise Quality

The unit of noise measurement is the decibel ("dB"), which measures the energy of the noise. Because the human ear is not uniformly sensitive to noise frequencies, the "A" weighting frequency scale ("dBA") was devised to correspond with the ear's sensitivity. The dBA uses specific weighting of a sound pressure level for the purpose of determining the human response to sound and the resulting unit of measure is the dBA.

Because noise levels can vary over a given time period, they are further quantified using the Equivalent Sound Level ("Leq"), Night Level ("Ln"), and Day-Night Level ("Ldn"). The Leq is an average of the time-varying sound energy for a specified time period. The Ln is an average of the time-varying sound energy for the time period between 10 p.m. and 7 a.m. local time. The Ldn is an average of the time-varying sound energy for one 24-hour period, with a 10 dB addition to the sound energy for the time period of 10 p.m. to 7 a.m. local time. If the sound



energy does not vary with time, the Ldn level will be equal to the Leq level plus 6.4 dBA due to 10 dBA penalty for nighttime noise sensitivity during the period of 10 p.m. to 7 a.m.

The Project includes the construction of three new M&R stations at interconnects with REX in Illinois and Enable MRT and LGC in Missouri. Spire conducted baseline noise surveys at each facility in December 2016.

The Project will also include the completion of four HDDs, each containing an entry/exit site in the following locations:

- Mississippi River North;
- Mississippi River South;
- Missouri River North;
- Missouri River South;
- Coldwater Creek West;
- Coldwater Creek East;
- Spanish Lake Park West; and
- Spanish Lake Park East.

Spire conducted baseline noise surveys at each of these sites in December 2016 and February 2017 which are presented in Table 9.2-1, and will conduct baseline noise surveys at the Spanish Lake Park location in April 2017.

#### 9.2.1 Regulatory Requirements for Noise

#### 9.2.1.1 Federal Noise Regulations

The USEPA has identified a noise level of 55 dBA as being the maximum sound level that will not adversely affect public health and welfare by interfering with speech or other activities in outdoor areas, with an adequate margin of safety (USEPA 1971). The FERC guidelines [18 CFR Part 157.206-(b)(5)(i) and (ii)] require that the noise attributable to new compressor engines or modification not exceed an Ldn of 55 dBA at the nearest noise sensitive area ("NSA") (schools, hospitals, or residences) unless such NSAs are established after facility construction. In addition, the FERC typically requires that the noise attributable to the full-load operation of a compressor station, including the compressor unit addition, should not exceed the previously existing noise levels produced by the compressor station at nearby NSAs that are above an Ldn of 55 dBA.

For HDD operations, the FERC guidelines [18 CFR Part 157.206-(b)(5)(iii)] require that the noise attributable to HDD not exceed an Ln of 55 dBA at the nearest NSAs unless such NSAs are established after facility construction.



**Table 9.2-1. Measured Ambient Noise Levels** 

| Location                                          | Start    | Stop     | LAeq |
|---------------------------------------------------|----------|----------|------|
| Aboveground Facilities                            | <u> </u> |          |      |
| DEV Descint Ctation                               | 12:45 PM | 1:00 PM  | 53.7 |
| REX Receipt Station                               | 1:01 PM  | 1:16 PM  | 49.7 |
| Lockeds / Lange Delivery Station                  | 8:07 AM  | 8:22 AM  | 54.5 |
| Laclede/Lange Delivery Station                    | 4:57 PM  | 5:13 PM  | 52.7 |
| Chain of Docks Station (western nertical)         | 6:30 AM  | 6:46 AM  | 61.0 |
| Chain of Rocks Station (western portion)          | 5:52 PM  | 6:07 PM  | 54.7 |
| Chain of Docks Station (acctors portion)          | 6:12 AM  | 6:27 AM  | 62.9 |
| Chain of Rocks Station (eastern portion)          | 6:57 PM  | 7:12 PM  | 57.0 |
| HDD Entry/Exit Locations                          | <u> </u> |          |      |
| Mississiani Diver North UDD Leastion 1            | 11:19 AM | 11:34 AM | 58.3 |
| Mississippi River North HDD Location <sup>1</sup> | 2:28 PM  | 2:43 PM  | 61.5 |
| Mississiani Diver Couth UDD Legation              | 10:09 AM | 10:24 AM | 40.0 |
| Mississippi River South HDD Location              | 3:25 PM  | 3:40 PM  | 46.5 |
| Missouri Diver North LIDD Location                | 9:27 AM  | 9:42 AM  | 43.7 |
| Missouri River North HDD Location                 | 5:03 PM  | 5:18 PM  | 58.9 |
| Missouri River South HDD Location                 | 8:56 AM  | 9:11 AM  | 50.2 |
| Missouri River South ADD Location                 | 4:29 PM  | 4:44 PM  | 47.3 |
| Coldwater Creek West HDD Location <sup>2</sup>    | 7:08 AM  | 7:23 PM  | 53.5 |
| Coldwater Creek West HDD Location                 | 5:18 PM  | 5:32 PM  | 56.6 |
| Coldwater Creek Fact LIDD Leastion?               | 8:02 AM  | 8:17 AM  | 50.0 |
| Coldwater Creek East HDD Location <sup>2</sup>    | 4:13 PM  | 4:28 PM  | 49.7 |
| Chanich Lake Dayk West LIDD Lasstice 3            | TBD      | TBD      | TBD  |
| Spanish Lake Park West HDD Location <sup>3</sup>  | TBD      | TBD      | TBD  |
| Consider Lake Dayly Fact LIDD Location 3          | TBD      | TBD      | TBD  |
| Spanish Lake Park East HDD Location <sup>3</sup>  | TBD      | TBD      | TBD  |

#### Notes:

- Due to restricted site access, ambient noise surveys were performed in the public right-of-way.
- Due to restricted site access, ambient noise surveys were performed on neighboring property.
- TBD To Be Determined. Ambient sound monitoring for these locations will be performed in April and data will be provided to FERC in May 2017.



#### 9.2.1.2 State Noise Regulations

A preliminary review of local noise ordinances for the areas where the HDD operations and M&R facilities will be located has resulted in the following assessment of noise level regulations for the area. This review should not be considered exhaustive, constituting publicly available information on the websites of the counties in question.

#### 9.2.1.3 Illinois/Missouri State Ordinances

No state-specific noise ordinances pertaining to HDD operations were found for either state.

#### 9.2.1.4 Local/County Noise Regulations

#### **Scott County, Illinois**

The REX Receipt Station is proposed to be located in this county. Spire is coordinating with the county. No applicable noise regulations have been identified.

#### Jersey County, Illinois

There is a proposed HDD entry/exit location (Mississippi River North) located in this county. This location is to the north of the Mississippi River.

Spire is coordinating with the county. No applicable noise regulations have been identified.

#### St. Charles County, Missouri

There is a proposed HDD entry/exit location (Mississippi River South) located in this county to the south of the Mississippi River and a second HDD entry/exit location (Missouri River North) located in this county to the north of the Missouri River.

This county restricts noise levels from portable or motor vehicle audio equipment and public address systems. Spire is coordinating with the county. No applicable noise regulations have been identified.

#### St. Louis County, Missouri

There are five proposed HDD entry/exit sites located in this county:

- Missouri River South to the south of the Missouri River;
- Coldwater Creek West located to the West of Highway 367;
- Coldwater Creek East located to the East of Highway 367 and Coldwater Creek;
- Spanish Lake Park West to the west of Spanish Lake Park; and
- Spanish Lake Park East to the east of Spanish Lake Park.

Two proposed M&R facilities are located in this county:

- Laclede/Lange Delivery Station; and
- Chain of Rocks.



There is a general noise ordinance for St. Louis County, Missouri. This ordinance generally states that, "It is also unlawful to speak, shout, sing, or create any noise at a volume that disturbs the peace of another person." Spire is coordinating with the county. No applicable noise regulations have been identified.

#### 9.2.2 Noise Level Impacts

Although pipeline construction activities may cause some noise impact during construction, this impact will be limited to the relatively short period of active construction. The Project is not expected to result in a significant or long-term disturbance during construction of the pipeline in the Project area.

The Project will include eight proposed HDD entry/exit locations and three M&R facilities. A total of 33 locations are considered potentially impacted due to construction and/or operational noise. There are no new or modified compression facilities associated with this Project.

HDD operations generally consists of an HDD drilling rig and auxiliary support equipment, including mud pumps, portable generators, cranes, mud mixing and cleaning equipment, forklifts, loaders, trucks, and portable light sets. The sound level impacts at NSAs associated with the HDD entry/exit sites will depend on the drilling contractor and type of equipment used, the mode of operation of the equipment, the length of time the equipment is in use, the amount of equipment used simultaneously, and the distances between sound sources and sensitive sites. Noise analysis at the HDD sites was completed assuming that drilling may occur on either or both sides of the river.

The three M&R facilities will be new construction. The impacts of the construction and operation of the M&R stations have been evaluated and are included in Section 9.2.3.2 of this report. M&R stations typically include a fenced control building and a permanent access road. They also include a supply line and a discharge line from the associated pipeline, an emergency bypass line, and communication equipment for supervisory control.

The locations (distance and direction) of the NSAs preliminarily identified to the proposed HDD entry/exit locations and proposed M&R facilities are described below and are shown on the figures associated with each site in Appendix 9-D. The anticipated noise impacts from the HDD operations and M&R facilities were analyzed and where necessary, means to control construction noise from HDD operations and M&R facilities are presented. Spire performed a field reconnaissance of the HDD entry/exit locations, the proposed M&R facility locations, and the NSAs within a 0.5-mile radius of these locations, and conducted ambient sound level monitoring in the vicinity of the NSAs for each of the selected locations. Spire monitored sound level and established two sets of 15-minute averages at each location using a 3M SOUNDPRO Sound Level Meter (or equivalent).

An acoustical analysis was performed to determine the estimated noise contribution at each NSA using SoundPLAN® acoustical modeling software. Baseline noise survey results and noise impact calculation results are presented in Appendix 9-D.



#### 9.2.3 Noise Impacts

#### 9.2.3.1 Ambient/Existing Noise Surveys

Ambient noise surveys consisting of two 15-minute readings were conducted at each location determined to be potentially impacted by construction or operational noise during and after the Project.

These sites consisted of three M&R station locations. Six of the eight proposed HDD entry/exit locations have currently been monitored and ambient sound level recorded. The results of these ambient noise level surveys are included in Appendix 9-D of this report and are summarized in Table 9.2-1. Spire will conduct additional 15-minute readings at the Spanish Lake Park sites in April 2017 and provide FERC with this information in May 2017.

#### 9.2.3.2 Operational and Construction Noise Level Models

For each site denoted in Section 9.2.3.1 of this report, a sound model was constructed for noise producing activities associated with its construction and/or operation. Construction noise models were performed for each of the four HDD entry/exit locations. Operational noise models were conducted for each of the proposed new M&R facilities.

The models were constructed and run using SoundPLAN® acoustical modeling software. The resultant noise model maps are provided in Appendix 9-D of this report.

#### **REX Receipt Station (Operational Noise Model)**

The REX Receipt Station was modeled to include the following equipment and structures with associated conservatively assumed sound pressure levels:

- proposed flow control with P.O.R. skid at 86.2 dBA;
- proposed meter skid at 86.2 dBA;
- proposed separation filter at 60.0 dBA;
- proposed liquid storage tank at 50 dBA; and
- proposed temporary pig launcher/receiver at 86.2 dBA.

Within one-half-mile of the site there are the following NSAs:

- NSA RE001 consists of single-family dwellings to the northeast, along Clay Hollow Road, located approximately
   590 feet from the proposed REX Receipt Station.
- NSA RE002 consists of a single-family dwelling to the south, along 1215E, located approximately 985 feet from the proposed REX Receipt Station.
- NSA RE003 consists of a single-family dwelling to the northwest, along Clay Hollow Road, located approximately 1,145 feet from the proposed REX Receipt Station.
- NSA RE004 consists of a single-family dwelling to the southwest, off Manchester Alsey Road, located approximately 2,250 feet from the proposed REX Receipt Station.

• NSA RE005 consists of a single-family dwelling to the southeast, off Manchester Alsey Road, located approximately 2,615 feet from the proposed REX Receipt Station.

The results of this model show the sound level impacts on the above-listed NSAs will be negligible or non-existent with a 55 dBA sound level or less at or near the facility's fence line. See Figures 9.2-1A and 9.2.1B in Appendix 9-D for modeling results and NSA location mapping.

#### <u>Laclede/Lange Delivery Station (Operational Noise Model)</u>

The Laclede/Lange Delivery Station was modeled to include the following equipment and structures with associated conservatively assumed sound pressure levels:

- two proposed indirect gas fired heaters at 86.2 dBA;
- proposed temporary pig receiver at 86.2 dBA;
- proposed temporary pig launcher at 86.2 dBA;
- proposed meter skid at 86.2 dBA;
- proposed flow control skid at 86.2 dBA; and
- proposed odorant tank at 50 dBA.

Within one-half-mile of the site there are the following NSAs near this location:

- NSA LL001 consists of single-family dwellings to the east located on the opposite side of Blue Spruce Lane and along Fort Bellefontaine Road, located approximately 240 feet from the proposed Laclede/Lange Delivery Station.
- NSA LL002 consists of single-family dwellings to the southeast of the proposed facility and on the opposite side of Blue Spruce Lane, located approximately 340 feet from the proposed Laclede/Lange Delivery Station.
- NSA LL003 consists of single-family dwellings to the northwest of the proposed Laclede/Lange Delivery Station and along Old Jamestown Road and Fort Bellefontane Road, located approximately 570 feet from the proposed Laclede/Lange Delivery Station.
- NSA LL004 consists of single-family dwellings to the northwest of the proposed Laclede/Lange Delivery Station
  on the west side of Old Jamestown Road, located approximately 1,300 feet from the proposed Laclede/Lange
  Delivery Station.
- NSA LL005 consists of single-family dwellings to the southwest of the proposed Laclede/Lange Delivery Station
  on the west side of Old Jamestown Road, located approximately 1,170 feet from the proposed Laclede/Lange
  Delivery Station.
- NSA LL006 consists of single-family dwellings to the south of the proposed Laclede/Lange Delivery Station to the north and south of Old Jamestown Road, located approximately 1,150 feet from the proposed Laclede/Lange Delivery Station.

- NSA LL007 consists of single-family dwellings to the southeast of the proposed Laclede/Lange Delivery Station and along the east side of Old Jametown Road, located approximately 840 feet from the proposed Laclede/Lange Delivery Station.
- NSA LL008 consists of single-family dwellings to the north of the proposed Laclede/Lange Delivery Station and along Old Jamestown Road and Portage Road, located approximately 1,995 feet from the proposed Laclede/Lange Delivery Station.

The results of this model show the sound level impacts on the above-listed NSAs will be negligible or non-existent with a 55 dBA sound level or less at or near the facility's fence line. See Figures 9.2-2A and 9.2.2B in Appendix 9-D for modeling results and NSA location mapping.

#### **Chain of Rocks Station (Operational Noise Model)**

The Chain of Rocks Station is proposed on the North County Extension portion of this Project. A portion is located adjacent to the existing Enable MRT Chain of Rocks facility.

The facility was modeled to include the following equipment and structures with associated conservatively assumed sound pressure levels:

- proposed meter and flow control skid at 86.2 dBA;
- proposed O.P.P. skid at 86.2 dBA;
- proposed filter/separator at 60.0 dBA;
- proposed liquid storage tank at 50 dBA;
- proposed temporary pig launcher at 86.2 dBA; and
- and two temporary pig receivers at 86.2 dBA.

There are several NSAs near this location:

- NSA-MR001 consists of a convent to the north, located approximately 265 feet from the proposed location for Chain of Rocks and is bordered by Riverview Drive and Prigge Road.
- NSA-MR002 consists of a Nursing and Rehabilitation center to the south, located approximately 490 feet from the proposed Chain of Rocks along Prigge Road.
- NSA-MR003 consists of several single family dwellings to the east, located on approximately 810 feet from the proposed Chain of Rocks on the east side of Riverview Road.
- NSA-MR004 consists of several single family dwellings to the northeast, located approximately 975 feet from the proposed Chain of Rocks along the east side of Riverview Road. There is light commercial/industrial buildings to the east and abutting this NSA.
- NSA-MR005 consists of several single family dwellings to the southwest, located approximately 2,165 feet from the proposed Chain of Rocks along the north side of Coal Bank Road.

- NSA-MR006 consists of single family dwellings to the west, located approximately 1,100 feet from the
  proposed Chain of Rocks along the south side of Prigge Road and contains several minor streets including
  Mimeaux Drive, Briarbrae Drive, Briarbrae Court, and Petite Chalet Drive. There is also a school that is partially
  encompassed within the 0.5-mile radius in this NSA.
- NSA-MR007 consists of single family dwellings to the west, located approximately 660 feet from the proposed
   Chain of Rocks along the north side of Prigge Road and contains the minor street of Prigge Meadows Drive.
- NSA-MR008 consists of single family dwellings to the west, located approximately 1,285 feet from the proposed Chain of Rocks along the north side of Prigge Road and contains the minor street of Seager Lane.
- NSA-MR009 consists of single family dwellings to the northwest, located approximately 2,000 feet from the proposed Chain of Rocks along the minor streets of Rio Grande Drive, San Andreas Drive, and Laredo Avenue.

The results of this model show the sound level impacts on the above-listed NSAs will be negligible or non-existent with a 55 dBA sound level at or near the facility's fence line. See Figures 9.2-3A and 9.2.3B in Appendix 9-D for modeling results and NSA location mapping.

#### Mississippi River North HDD Site (Construction Noise Model)

Spire will operate HDD operations at a location located north of the Mississippi River. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated three shifts of nighttime work during pullback.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.

There is one impacted NSA near this location:

• NSA MS002 consists of single-family dwellings to the southeast, located approximately 1,395 feet from the proposed Mississippi River North HDD entry/exit location.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 miles per hour ("MPH").

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors.

River Road is a major artery for traffic through the area and influences the sound environment. It has been included in the sound model.



Figures 9.2-4A and 9.2.4B in Appendix 9-D show the sound level contributions to the surrounding sound environment during operation on the site, as well as mapping of the NSA locations. The sound level impact at or near the property line is shown to be 55 dBA or less.

Table 9.2-2 shows the estimated sound levels (Ldn) for ambient/existing, HDD operations without mitigation, and HDD operations with mitigation considered during pullback operations when 24-hour operation at the site would occur.

Based on this analysis, the 55.0 dBA threshold would not be exceeded during these operating conditions. Spire commits to conducting all other drilling activities during daytime hours only.

Table 9.2-2. Noise Quality Analysis for HDD Bore at Mississippi River North Location<sup>1, 2</sup>

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction<br>of NSA<br>from Site<br>Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|--------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| NSA-MS002 | 0.26                                              | East                                       | 42.0                               | 42.3                                                                                   | 0.3                                                  | 42.0                                                                                | 0.0                                               |

#### Notes:

- Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

#### Mississippi River South HDD Site (Construction Noise Model)

Spire will operate HDD operations at a location located south of the Mississippi River. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated three shifts of nighttime work during pullback.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.



There are two impacted NSAs near this location:

- NSA MS001 consists of single-family dwellings to the southeast, located approximately 1,175 feet from the proposed Mississippi River South HDD entry/exit; and
- NSA MS003 consists of single-family dwellings to the south, located approximately 2,100 feet from the proposed Mississippi River South HDD entry/exit.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors.

Figures 9.2-5 and 9.2.4B in Appendix 9-D show the sound level contributions to the surrounding sound environment during operation on the site, as well as mapping of the NSA locations. The sound level impact at or near the property line is shown to be 55 dBA or less.

Table 9.2-3 shows the estimated sound levels (Ldn) for ambient/existing, HDD operations without mitigation, and HDD operations with mitigation considered during pullback operations when 24-hour operation at the site would occur.

| Table 9.2-3. Noise Quality Analysis f | or HDD Bore at Mississippi | River South Location <sup>1, 2</sup> |
|---------------------------------------|----------------------------|--------------------------------------|
|                                       |                            |                                      |

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction<br>of NSA<br>from Site<br>Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|--------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| NSA-MS001 | 0.30                                              | Southeast                                  | 41.7                               | 46.3                                                                                   | 4.6                                                  | 44.7                                                                                | 3.0                                               |
| NSA-MS003 | 0.44                                              | Southeast                                  | 53.0                               | 54.9                                                                                   | 2.0                                                  | 53.2                                                                                | 0.2                                               |

#### Notes:

- Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

Based on this analysis, the 55.0 dBA threshold would not be exceeded during these operating conditions. Spire commits to conducting all other drilling activities during daytime hours only.



#### Missouri River North HDD Site (Construction Noise Model)

Spire will operate HDD operations at a location located north of the Missouri River. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated 3 shifts of nighttime work during pullback.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.

There is one NSA near this location:

• NSA MO002 consists of single-family dwellings to the north, along Minert Road, located approximately 2,335 feet from the proposed Missouri River North HDD entry/exit location.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors.

Figures 9.2-6A and 9.2.6B in Appendix 9-D show the sound level contributions to the surrounding sound environment during operation on the site, as well as mapping of the NSA locations. The sound level impact at or near the property line is shown to be 55 dBA or less.

Table 9.2-4 shows the estimated sound levels (Ldn) for ambient/existing, HDD operations without mitigation, and HDD operations with mitigation considered during pullback operations when 24-hour operation at the site would occur.

Based on this analysis, the 55.0 dBA threshold would not be exceeded during these operating conditions. Spire commits to conducting all other drilling activities during daytime hours only.

#### Missouri River South HDD Site (Construction Noise Model)

Spire will operate HDD operations at a location within Central Stone's facility located south of the Missouri River. The proposed HDD entry/exit location is on the western edge of the property. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated three shifts of nighttime work during pullback.



Table 9.2-4. Noise Quality Analysis for HDD Bore at Missouri River North Location<sup>1, 2</sup>

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction<br>of NSA<br>from Site<br>Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|--------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| NSA-MO002 | 0.44                                              | North                                      | 51.5                               | 55.0                                                                                   | 3.4                                                  | 53.1                                                                                | 1.6                                               |

#### Notes:

- Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.

#### There are five NSAs near this location:

- NSA MO001 consists of single-family dwellings to the northwest, located approximately 250 feet from the proposed Missouri River South HDD entry/exit location. An earthen barrier currently exists between the proposed HDD entry/exit location and the NSAs.
- NSA MO003 consists of single-family dwellings to the northwest, located approximately 1,545 feet from the proposed Missouri River South HDD entry/exit location.
- NSA MO004 consists of single-family dwellings to the west, located approximately 1,790 feet from the proposed Missouri River South HDD entry/exit location.
- NSA MO005 consists of single-family dwellings to the southwest, located approximately 1,980 feet from the proposed Missouri River South HDD entry/exit location.
- NSA MO006 consists of single-family dwellings to the south, located approximately 1,235 feet from the proposed Missouri River South HDD entry/exit location.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.



Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors.

Figures 9.2-7 and 9.2.6B in Appendix 9-D show the sound level contributions to the surrounding sound environment during operation on the site, as well as mapping of the NSA locations. The sound level impact at or near the property line is shown to be 55 dBA or less.

Table 9.2-5 shows the estimated sound levels (Ldn) for ambient/existing, HDD operations without mitigation, and HDD operations with mitigation considered during pullback operations when 24-hour operation at the site would occur.

Table 9.2-5. Noise Quality Analysis for HDD Bore at Missouri River South Location<sup>1, 2</sup>

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction of<br>NSA from<br>Site Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential<br>Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise<br>Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| NSA-MO001 | 0.03                                              | West                                    | 50.7                               | 52.9                                                                                   | 2.2                                                     | 51.0                                                                                | 0.3                                                  |
| NSA-MO003 | 0.26                                              | Northwest                               | 45.8                               | 46.1                                                                                   | 0.2                                                     | 45.9                                                                                | 0.0                                                  |
| NSA-MO004 | 0.30                                              | West                                    | 42.5                               | 43.2                                                                                   | 0.7                                                     | 42.6                                                                                | 0.1                                                  |
| NSA-MO005 | 0.36                                              | Southwest                               | 39.1                               | 39.3                                                                                   | 0.2                                                     | 39.1                                                                                | 0.0                                                  |
| NSA-MO006 | 0.28                                              | South                                   | 52.5                               | 52.6                                                                                   | 0.1                                                     | 52.5                                                                                | 0.0                                                  |

#### Notes:

- <sup>1</sup> Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

Based on this analysis, the 55.0 dBA threshold would not be exceeded during these operating conditions. Spire commits to conducting all other drilling activities during daytime hours only.

#### **Coldwater Creek East HDD Site (Construction Noise Model)**

Spire will operate HDD operations at a location east of Highways 67/367 to the east of Coldwater Creek. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated 2 shifts of nighttime work during pullback.



The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.

There are eight NSAs near this location:

- NSA MO007 consists of single-family dwellings to the southwest, located approximately 470 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO008 consists of single-family dwellings to the east, located approximately 475 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO009 consists of single-family dwellings to the southeast, located approximately 610 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO010 consists of a school and single-family dwellings to the southwest, located approximately 715 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO011 consists of single-family dwellings to the west, located approximately 1,955 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO012 consists of single-family dwellings to the east, located approximately 1,780 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO013 consists of a church and single-family dwellings to the southeast, located approximately 1,495 feet from the proposed Coldwater Creek East HDD entry/exit location.
- NSA MO014 consists of single-family dwellings to the southeast, located approximately 1,865 feet from the proposed Coldwater Creek East HDD entry/exit location.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors.

Figures 9.2-8A and 9.2.8B in Appendix 9-D show the sound level contributions to the surrounding sound environment during operation on the site, as well as mapping of the NSA locations. The sound level impact at or near the property line is shown to be 55 dBA or less.



Table 9.2-6 shows the estimated sound levels (Ldn) for ambient/existing, HDD operations without mitigation, and HDD operations with mitigation considered during pullback operations when 24-hour operation at the site would occur.

Table 9.2-6. Noise Quality Analysis for HDD Bore at Coldwater Creek East<sup>1, 2</sup>

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction of<br>NSA from<br>Site Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential<br>Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise<br>Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| NSA-MO007 | 0.08                                              | South                                   | 45.7                               | 52.4                                                                                   | 6.7                                                     | 51.2                                                                                | 5.5                                                  |
| NSA-MO008 | 0.08                                              | East                                    | 41.9                               | 50.3                                                                                   | 8.4                                                     | 49.0                                                                                | 7.1                                                  |
| NSA-MO009 | 0.13                                              | Southeast                               | 44.7                               | 52.3                                                                                   | 7.6                                                     | 51.1                                                                                | 6.4                                                  |
| NSA-MO010 | 0.19                                              | Southwest                               | 46.9                               | 47.2                                                                                   | 0.3                                                     | 47.1                                                                                | 0.2                                                  |
| NSA-MO011 | 0.36                                              | Southwest                               | 69.0                               | 69.0                                                                                   | 0.0                                                     | 69.0                                                                                | 0.0                                                  |
| NSA-MO012 | 0.36                                              | East                                    | 58.3                               | 58.3                                                                                   | 0.1                                                     | 58.3                                                                                | 0.1                                                  |
| NSA-MO013 | 0.36                                              | South                                   | 50.4                               | 50.6                                                                                   | 0.1                                                     | 50.5                                                                                | 0.1                                                  |
| NSA-MO014 | 0.42                                              | Southeast                               | 52.5                               | 52.5                                                                                   | 0.0                                                     | 52.5                                                                                | 0.0                                                  |

#### Notes:

- Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

Based on this analysis, the 55.0 dBA threshold would not be exceeded during these operating conditions for NSAs currently at or below 55.0 dBA. For NSAs with an estimated Ldn currently above 55.0 dBA, operation of the HDD at this location does not contribute to an increase of 10.0 dBA or greater at these locations based on this analysis.

# **Coldwater Creek West HDD Site (Construction Noise Model)**

Spire will operate HDD operations at a location west of Highways 67/367 to the west of Coldwater Creek. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated two shifts of nighttime work during pullback.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;



- three generators at 90 dBA; and
- separation plant at 100 dBA.

There are seven NSAs near this location:

- NSA MO015 consists of single-family dwellings to the west, located approximately 430 feet from the proposed Coldwater Creek West HDD entry/exit location.
- NSA MO016 consists of single-family dwellings to the west, located approximately 960 feet from the proposed Coldwater Creek West HDD entry/exit location.
- NSA MO017 consists of a school and single-family dwellings to the west, located approximately 1,440 feet from the proposed Coldwater Creek West HDD entry/exit location.
- NSA MO018 consists of single-family dwellings to the southwest, located approximately 910 feet from the proposed Coldwater Creek West HDD entry/exit location.
- NSA MO019 consists of single-family dwellings to the south, located approximately 1,435 feet from the proposed Coldwater Creek West HDD entry/exit location.
- NSA MSO20 consists of a church and single-family dwellings to the north, located approximately 710 feet from the proposed Coldwater Creek West HDD entry/exit location.
- NSA MSO21 consists of single-family dwellings to the northwest, located approximately 1,715 feet from the proposed Coldwater Creek West HDD entry/exit location.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors.

Figures 9.2-9 and 9.2.8B in Appendix 9-D show the sound level contributions to the surrounding sound environment during operation on the site, as well as mapping of the NSA locations. The sound level impact at or near the property line is shown to be 55 dBA or less.

Table 9.2-7 shows the estimated sound levels (Ldn) for ambient/existing, HDD operations without mitigation, and HDD operations with mitigation considered during pullback operations when 24-hour operation at the site would occur.

Based on this analysis, the 55.0 dBA threshold would not be exceeded during these operating conditions for NSAs currently at or below 55.0 dBA. For NSAs with an estimated Ldn currently above 55.0 dBA, operation of the HDD at this location does not contribute to an increase of 10.0 dBA or greater at these locations based on this analysis.



Table 9.2-7. Noise Quality Analysis for HDD Bore at Coldwater Creek West<sup>1, 2</sup>

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction of<br>NSA from<br>Site Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential<br>Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise<br>Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| NSA-MO015 | 0.03                                              | South                                   | 58.7                               | 58.9                                                                                   | 0.3                                                     | 58.7                                                                                | 0.0                                                  |
| NSA-MO016 | 0.15                                              | South                                   | 65.4                               | 65.4                                                                                   | 0.0                                                     | 65.4                                                                                | 0.0                                                  |
| NSA-MO017 | 0.19                                              | Southwest                               | 67.8                               | 67.8                                                                                   | 0.0                                                     | 67.8                                                                                | 0.0                                                  |
| NSA-MO018 | 0.17                                              | South                                   | 48.6                               | 48.7                                                                                   | 0.1                                                     | 48.6                                                                                | 0.0                                                  |
| NSA-MO019 | 0.35                                              | South                                   | 43.4                               | 43.5                                                                                   | 0.1                                                     | 43.5                                                                                | 0.0                                                  |
| NSA-MO020 | 0.08                                              | North                                   | 48.5                               | 52.1                                                                                   | 3.6                                                     | 49.4                                                                                | 0.9                                                  |
| NSA-MO021 | 0.19                                              | Northwest                               | 48.6                               | 48.8                                                                                   | 0.2                                                     | 48.7                                                                                | 0.1                                                  |

#### Notes:

- <sup>1</sup> Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

# Spanish Lake Park East HDD Site (Construction Noise Model)

Spire will operate HDD operations at a location east of Spanish Lake Park. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated two shifts of nighttime work during pullback.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.

There are potentially four NSAs near this location. These NSAs will be described in greater detail once the noise surveys at this location have been completed.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill,



existing geology, and other factors. Spire commits to conducting all other drilling activities during daytime hours only.

At this time, the HDD location at Spanish Lake Park has not been surveyed for ambient sound levels. Spire will be performing an ambient sound level survey for these locations in the near future once the location is finalized, as well as performing a sound level model analysis for the site based on a typical HDD boring rig arrangement.

At that time, Spire will provide supplemental information with the applicable information in Table 9.2-8 and update Appendix D to include Figure 9.2.10.

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction of<br>NSA from<br>Site Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential<br>Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise<br>Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| NSA-MO026 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO027 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO028 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO029 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |

Table 9.2-8. Noise Quality Analysis for HDD Bore at Spanish Lake Park East<sup>1, 2</sup>

# Notes:

- <sup>1</sup> Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

# Spanish Lake Park West HDD Site (Construction Noise Model)

Spire will operate HDD operations at a location west of Spanish Lake Park. It is anticipated that drilling operations at this location will not exceed 15 weeks with an estimated 2 shifts of nighttime work during pullback.

The HDD entry/exit location, when in operation, will preliminarily consist of the following equipment:

- large drill rig at 110 dBA;
- two mud pumps at 110 dBA;
- three generators at 90 dBA; and
- separation plant at 100 dBA.



There are potentially five NSAs near this location. These NSAs will be described in greater detail once the noise surveys at this location have been completed.

Vehicles will be used to access the site as well as perform work around the site. These vehicles are assumed to be limited in speed to less than 30 MPH.

Spire is planning on conducting HDD activities during daytime working hours, except for pull-back activities which will require 24-hour operations for a short timeframe. The drill times vary depending on the length of the drill, existing geology, and other factors. Spire commits to conducting all other drilling activities during daytime hours only.

At this time, the HDD location at Spanish Lake Park has not been surveyed for ambient sound levels. Spire will be performing an ambient sound level survey for these locations in April 2017, as well as performing a sound level model analysis for the site based on a typical HDD boring rig arrangement. This information will be provided to FERC in May 2017.

At that time, Spire will provide an update to this report with the applicable information in the Table 9.2-9 and update Appendix D to include Figure 9.2.11.

| NSA       | Approximate Distance of NSA to Site Center (mile) | Direction of<br>NSA from<br>Site Center | Ambient<br>Sound<br>Level<br>(Ldn) | Estimated Sound Level (Ldn) due to HDD Site Operations without Mitigation <sup>3</sup> | Potential<br>Noise<br>Increase<br>without<br>Mitigation | Estimated Sound Level (Ldn) due to HDD Site Operations with Mitigation <sup>4</sup> | Potential<br>Noise<br>Increase<br>with<br>Mitigation |
|-----------|---------------------------------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| NSA-MO022 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO023 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO024 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO025 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |
| NSA-MO026 | TBD                                               | TBD                                     | TBD                                | TBD                                                                                    | TBD                                                     | TBD                                                                                 | TBD                                                  |

Table 9.2-9. Noise Quality Analysis for HDD Bore at Spanish Lake Park West<sup>1, 2</sup>

#### Notes:

- <sup>1</sup> Ldn sound levels estimated Using SoundPLAN® V7.4 Acoustical Modeling Software.
- <sup>2</sup> This HDD location will potentially operate 24 hours per day (e.g., during pullback operations).
- Without noise reduction countermeasures (most conservative case).
- For the purpose of estimating sound levels with mitigation, a conservative reduction of 10 db was applied to all potential sources prior to operational sound modeling. Specific noise mitigation measures have not been determined and noise mitigation measures were not included in operational sound modeling.

# **Expected Sound Levels**

After evaluating ambient conditions and modeled sound level output, it is not anticipated that noise mitigation will be required at any of the M&R Stations or HDD locations. Therefore, total the expected Ldn at each NSA can



be found in Tables 9.2-2 through 9.2-9, under the column titled "Estimated Sound Level (Ldn) due to HDD site operations without mitigation".

# **9.2.3.3** Blasting

Blasting activities are proposed to occur at two locations during pipeline construction, between mileposts 44.94 and 44.95 and 58.24 through 58.62. Blasting activities would only occur during daytime hours, specifically between the hours of 9:00 a.m. to 3:00 p.m. in accordance with Spire's Blasting Plan (Resource Report 6, Appendix 6-C). All blasting activities will be performed in accordance with local and state regulations by a qualified blasting contractor.

# 9.2.4 Noise Mitigation

For diesel equipment used during construction of the Project, if it is found to be necessary to mitigate noise, it is anticipated that common construction mitigation measures such as vibration control, mufflers, etc. would be utilized for the Project.

HDD noise impacts determined in Section 9.2.3, Noise Impacts, may be mitigated as determined necessary through measures such as installing noise barriers, enclosing the drill rig fully or partially, and/or offering to temporarily relocate affected NSAs during short periods of elevated noise.

Construction activity and associated noise levels for the pipeline and aboveground facility installation will vary depending on the phase of construction in progress at any one time. These construction phases include site grading, clearing/grubbing, and pipeline and aboveground facility installation. The highest level of construction noise is assumed to occur during earthwork.

For M&R stations and mainline valves associated with the Project, the site construction noise associated with the installation of the new equipment should have a negligible impact on nearby NSAs, noting that construction will be limited to weekday daytime hours. The most prevalent sound source during construction will be the internal combustion engines used to power the construction equipment.

Pipeline construction noise-related impacts from the Project are expected to be short in duration at any given location and, therefore, have minimal impact. People at nearby residences and buildings will hear the construction noise but the overall impact will have a short duration and be insignificant. Construction will not result in the generation of, or exposure of persons to, excessive noise or vibration levels for lengthy periods.

Noise mitigation measures to be employed during construction include ensuring that sound muffling devices that are provided as standard equipment by the construction equipment manufacturer are kept in good working order.

The nature of construction of a pipeline dictates that construction activities and associated noise levels will move along the corridor and that no single NSA will be exposed to significant noise levels for an extended period. Some discrete activities like hydrostatic testing, tie-ins, and purging and packing the pipeline, may require 24-hour activity for limited periods (from one to three days). These 24-hour activities require only a few overnight construction personnel and do not result in significant noise generation.



There will be locations where pipeline construction will occur within 50 feet of residences of the North County Extension. Noise and vibration generated during construction at this distance will not be unusual in nature and will be similar to that which would occur during public works type projects (e.g., paving, trenching). This work will only occur for a few days or less at any location and impacts will be temporary. This work will only occur during weekday daytime hours in order to minimize impacts.

Work along the pipeline and at aboveground facilities will be performed in accordance with local noise ordinances.

Appendix 9-D provides detailed analysis of methodology, source sound level data, and proposed noise control treatments for each noise study.

# 9.3 References

- Intergovernmental Panel on Climate Change. 2006. *IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2 Energy, Chapter 3 Mobile Combustion*. Accessed September 2016 from <a href="http://www.ipcc-nggip.iges.or.jp/public/2006gl/">http://www.ipcc-nggip.iges.or.jp/public/2006gl/</a>.
- Midwest Research Institute. 1998. *Emission Factor Documentation for AP-42 Section 13.2.2 Unpaved Roads Final Report*. Accessed September 2016 from <a href="https://www3.epa.gov/ttnchie1/ap42/ch13/bgdocs/b13s02-2.pdf">https://www3.epa.gov/ttnchie1/ap42/ch13/bgdocs/b13s02-2.pdf</a>.
- National Oceanic and Atmospheric Administration, National Centers for Environmental Information. 2015. *Local Climatological Data Annual Summary with Comparative Data ST Louis, Missouri (KSTL)*. Accessed September 2016 from http://www1.ncdc.noaa.gov/pub/orders/IPS/IPS-B1F4E70E-0021-4CD0-BE03-497DE74557CD.pdf.
- National Oceanic and Atmospheric Administration, National Centers for Environmental Information. 1981-2010. Three-decade Averages of Climatological Variables for St. Charles County Airport, Missouri. Accessed September 2016 from http://www.ncdc.noaa.gov/cdo-web/datatools/normals.
- United States Environmental Protection Agency. 2016. *Annual Summary Data*. Accessed December 2016 from <a href="https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download\_files.html#Annual.">https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download\_files.html#Annual.</a>
- United States Environmental Protection Agency. 2016. *Green Book Nonattainment Areas*. Accessed September 2016 from <a href="https://www3.epa.gov/airquality/greenbook/">https://www3.epa.gov/airquality/greenbook/</a>.
- United States Environmental Protection Agency. 2006. *AP 42 Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources Chapter 13.0 Introduction to Miscellaneous Sources.*Accessed September 2016 from <a href="https://www3.epa.gov/ttn/chief/ap42/ch13/index.html">https://www3.epa.gov/ttn/chief/ap42/ch13/index.html</a>.
- United States Environmental Protection Agency. 2004. Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition, NR-009c (EPA420-P-04-009). April 2004. Accessed September 2016 from https://www3.epa.gov/otaq/models/nonrdmdl/nonrdmdl/2004/420p04009.pdf.

# spire 5

**APPENDIX 9-A Emission Estimates** 

Table 9A-1

|                                                                                                      | Table 3A-1 |                           |             |             |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
|------------------------------------------------------------------------------------------------------|------------|---------------------------|-------------|-------------|--------------------|-----------------------------------------|--------|------------------------------|-----------------|----------------|-------|-------------|-----------------|-----------------|------------------|-------------------|
|                                                                                                      |            | Estimated Operating Hours |             |             |                    | Emission Factors (g/hp-hr) <sup>1</sup> |        |                              |                 |                | Est   | imated Emis | ssions (ton     | s/yr)           |                  |                   |
|                                                                                                      |            | 2                         | 4-Inch Pipe | line        |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
|                                                                                                      |            |                           | Months at   |             | Total              |                                         |        |                              |                 |                |       |             |                 |                 |                  | İ                 |
| Equipment Type                                                                                       | HP         | Number                    | Project     | Utilization | Hours <sup>2</sup> | HC <sup>3</sup>                         | co     | SO <sub>2</sub> <sup>4</sup> | NO <sub>x</sub> | Particulates 5 | VOC   | co          | SO <sub>2</sub> | NO <sub>x</sub> | PM1 <sub>0</sub> | PM <sub>2.5</sub> |
| Cranes                                                                                               |            |                           |             |             |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
| Crane: 150 ton (Tier 3)                                                                              | 425        | 0                         | 0.00        | 50%         | 0                  | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 0.00  | 0.00        | 0.00E+00        | 0.00            | 0.00             | 0.00              |
| Earthwork/Concrete Equipment                                                                         |            |                           |             |             |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
| Excavator (CAT 336) (Tier 3)                                                                         | 300        | 30                        | 4.16        | 50%         | 24,960             | 0.1836                                  | 0.7475 | 4.86E-03                     | 2.5             | 0.15           | 1.52  | 6.17        | 4.01E-02        | 20.64           | 1.24             | 1.20              |
| Side Boom (CAT 573) (Tier 0)                                                                         | 225        | 30                        | 4.16        | 50%         | 24,960             | 0.68                                    | 2.7    | 4.86E-03                     | 8.38            | 0.402          | 4.21  | 16.72       | 3.01E-02        | 51.89           | 2.49             | 2.41              |
| Dozer (CAT D8) (Tier 3)                                                                              | 325        | 20                        | 4.16        | 50%         | 16,640             | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 1.00  | 5.02        | 2.90E-02        | 14.91           | 0.89             | 0.87              |
| Vehicles                                                                                             |            |                           |             |             |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
| Low Boy Truck (Tier 3)                                                                               | 200        | 5                         | 4.48        | 50%         | 4,480              | 0.1836                                  | 0.7475 | 4.86E-03                     | 2.5             | 0.15           | 0.18  | 0.74        | 4.80E-03        | 2.47            | 0.15             | 0.14              |
| Contractor Truck (1/2 ton pickup) (Tier 3)                                                           | 350        | 30                        | 4.16        | 50%         | 24,960             | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 1.61  | 8.11        | 4.68E-02        | 24.08           | 1.44             | 1.40              |
| Inspector Trucks (1/2 ton Pickup) (Tier 3)                                                           | 350        | 20                        | 4.16        | 50%         | 16,640             | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 1.07  | 5.41        | 3.12E-02        | 16.05           | 0.96             | 0.93              |
| Surveyor Trucks (1/2 ton Pickup) (Tier 3)                                                            | 350        | 5                         | 4.16        | 50%         | 4,160              | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 0.27  | 1.35        | 7.80E-03        | 4.01            | 0.24             | 0.23              |
| Welder Rig (Tier 2)                                                                                  | 350        | 10                        | 4.16        | 50%         | 8,320              | 0.1669                                  | 0.8425 | 4.86E-03                     | 4.3351          | 0.1316         | 0.54  | 2.70        | 1.56E-02        | 13.92           | 0.42             | 0.41              |
| Boom Truck (5 Tons) (Tier 2)                                                                         | 400        | 3                         | 3.20        | 50%         | 1,920              | 0.1669                                  | 0.8425 | 4.86E-03                     | 4.3351          | 0.1316         | 0.14  | 0.71        | 4.12E-03        | 3.67            | 0.11             | 0.11              |
| Fuel Truck (5 ton) (Tier 3)                                                                          | 400        | 2                         | 3.20        | 50%         | 1,280              | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 0.09  | 0.48        | 2.74E-03        | 1.41            | 0.08             | 0.08              |
| Water Truck (5 ton) (Tier 0)                                                                         | 400        | 2                         | 3.20        | 50%         | 1,280              | 0.68                                    | 2.7    | 4.86E-03                     | 8.38            | 0.402          | 0.38  | 1.52        | 2.74E-03        | 4.73            | 0.23             | 0.22              |
| Employee Vehicles (1/2 pickups) (Tier 3)                                                             | 350        | 40                        | 4.80        | 50%         | 38,400             | 0.1669                                  | 0.8425 | 4.86E-03                     | 2.5             | 0.15           | 2.47  | 12.48       | 7.20E-02        | 37.04           | 2.22             | 2.16              |
| Employee Vehicles (cars) (Tier 3)                                                                    | 150        | 35                        | 4.80        | 50%         | 33,600             | 0.1836                                  | 0.8667 | 4.86E-03                     | 2.5             | 0.22           | 1.02  | 4.82        | 2.70E-02        | 13.89           | 1.22             | 1.19              |
| Pipe Stinging Truck (Tier 3)                                                                         | 200        | 5                         | 3.20        | 50%         | 3,200              | 0.3085                                  | 0.7475 | 4.86E-03                     | 4               | 0.1316         | 0.22  | 0.53        | 3.43E-03        | 2.82            | 0.09             | 0.09              |
| R/W Mowing Tractors (Tier 2)                                                                         | 75         | 5                         | 1.60        | 50%         | 1,600              | 0.3672                                  | 2.3655 | 4.86E-03                     | 4.7             | 0.24           | 0.05  | 0.31        | 6.43E-04        | 0.62            | 0.03             | 0.03              |
| Air Compressors                                                                                      |            |                           | •           |             |                    |                                         |        |                              |                 | •              |       |             |                 |                 |                  |                   |
| Air Compressor (Tier 2)                                                                              | 50         | 10                        | 3.84        | 50%         | 7,680              | 0.2789                                  | 1.5323 | 4.86E-03                     | 4.7279          | 0.3389         | 0.12  | 0.65        | 2.06E-03        | 2.00            | 0.14             | 0.14              |
| Miscellaneous Equipment                                                                              |            |                           | •           |             |                    |                                         |        |                              |                 | •              |       |             |                 |                 |                  |                   |
| Water Pumps (Tier 2)                                                                                 | 5          | 10                        | 3.20        | 50%         | 6,400              | 0.5508                                  | 4.1127 | 4.86E-03                     | 4.3             | 0.5            | 0.02  | 0.15        | 1.72E-04        | 0.15            | 0.02             | 0.02              |
| Mud Pumps (Tier 2)                                                                                   | 25         | 4                         | 3.20        | 50%         | 2,560              | 0.438                                   | 2.161  | 4.86E-03                     | 4.4399          | 0.2665         | 0.03  | 0.15        | 3.43E-04        | 0.31            | 0.02             | 0.02              |
| Tree Cutting Hot Saw (Tier 2)                                                                        | 200        | 2                         | 2.05        | 50%         | 820                | 0.3085                                  | 0.7475 | 4.86E-03                     | 4               | 0.1316         | 0.06  | 0.14        | 8.79E-04        | 0.72            | 0.02             | 0.02              |
| Boring Machine (Tier 0)                                                                              | 600        | 2                         | 3.20        | 50%         | 1,280              | 0.68                                    | 2.7    | 4.86E-03                     | 8.38            | 0.402          | 0.58  | 2.29        | 4.12E-03        | 7.10            | 0.34             | 0.33              |
| Carry Deck Loader                                                                                    | 400        | 2                         | 3.75        | 50%         | 1,500              | 0.1669                                  | 0.8425 | 4.86E-03                     | 4.3351          | 0.1316         | 0.11  | 0.56        | 3.22E-03        | 2.87            | 0.09             | 0.08              |
| Generator                                                                                            | 10         | 4                         | 3.75        | 50%         | 3,000              | 0.5508                                  | 4.1127 | 4.86E-03                     | 4.3             | 0.5            | 0.02  | 0.14        | 1.61E-04        | 0.14            | 0.02             | 0.02              |
| Backhoe (CAT 416F)                                                                                   | 90         | 2                         | 3.75        | 50%         | 1,500              | 0.3672                                  | 2.3655 | 4.86E-03                     | 4.7             | 0.24           | 0.05  | 0.35        | 7.24E-04        | 0.70            | 0.04             | 0.03              |
| Mini Excavator                                                                                       | 25         | 4                         | 3.75        | 50%         | 3,000              | 0.438                                   | 2.161  | 4.86E-03                     | 4.4399          | 0.2665         | 0.04  | 0.18        | 4.02E-04        | 0.37            | 0.02             | 0.02              |
| Dump Trucks                                                                                          | 300        | 4                         | 3.75        | 50%         | 3,000              | 0.3085                                  | 0.7475 | 4.86E-03                     | 4               | 0.1316         | 0.31  | 0.74        | 4.82E-03        | 3.97            | 0.13             | 0.13              |
| ·                                                                                                    |            |                           |             |             |                    |                                         |        |                              |                 |                | voc   | со          | SO <sub>2</sub> | NOx             | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Total Estimated Project Emissions (Tons/Project/Year)                                                |            |                           |             |             |                    |                                         |        |                              |                 |                | 16.17 | 72.80       | 0.34            | 231.27          | 12.72            | 12.34             |
|                                                                                                      | •          |                           |             |             |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
| Total Estimated Emissions - Metropolitan St. Louis Air<br>Quality Control Region (Tons/Project/Year) |            |                           |             |             |                    |                                         |        |                              |                 |                | 3.69  | 16.60       | 0.08            | 52.74           | 2.90             | 2.81              |
| Total Estimated Emissions - Jersey County, Illinois<br>maintenance area (Tons/Project/Year)          |            |                           |             |             |                    |                                         |        |                              |                 |                | 4.40  | 19.80       | 0.09            | 62.90           | 3.46             | 3.35              |
| Total Estimated Emissions non-attainment and                                                         | •          |                           |             |             |                    |                                         |        |                              |                 |                |       |             |                 |                 |                  |                   |
| maintenance areas                                                                                    |            |                           |             |             |                    |                                         |        |                              |                 |                | 8.08  | 36.40       | 0.17            | 115.63          | 6.36             | 6.17              |

#### Notes:

VMT per Day for 24-inch Pipeline: <sup>5</sup>

<sup>2</sup> Assume 100 hour work weeks and 4 weeks per month.

<sup>&</sup>lt;sup>3</sup> Assume Hydrocarbon(HC) approximately equal to VOCs.

<sup>&</sup>lt;sup>4</sup> Assumes Ultra Low Sulfur Diesel Fuel of 15ppm sulfur.

Assumes under Consider Design Teacher Programmes The Construction of the PM is assumed to be smaller than 10 microns (PM<sub>10</sub>) and 97% of the PM is assumed to be smaller than 2.5 microns (PM<sub>2.5</sub>) and all emissions are based on the assumption that all non-road engines will be either Tier 0, Tier 2, or Tier 3 Compliant (as noted). For the purpose of this estimate, all emissions sources are conservatively assumed to be desiel powered.

Table 9A-2

|                                                                                             | Table 9A-2 |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
|---------------------------------------------------------------------------------------------|------------|--------|------------|---------------|--------------------|-----------------|--------|------------------------------|-----------------|----------------|-------------------------------|-------|-----------------|-----------------|------------------|-------------------|
|                                                                                             |            |        | stimated C | perating Hour | s                  |                 | Emis   | sion Factor                  | s (g/hp-hr)     | 1              | Estimated Emissions (tons/yr) |       |                 |                 |                  |                   |
|                                                                                             |            | Nort   | h County E | xtension      |                    | 1               |        |                              |                 |                |                               |       |                 |                 |                  |                   |
|                                                                                             |            |        | Months at  |               | Total              |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Equipment Type                                                                              | HP         | Number | Project    | % Utilization | Hours <sup>2</sup> | HC <sup>3</sup> | co     | SO <sub>2</sub> <sup>4</sup> | NO <sub>x</sub> | Particulates 5 | VOC                           | co    | SO <sub>2</sub> | NO <sub>x</sub> | PM1 <sub>0</sub> | PM <sub>2.5</sub> |
| Cranes                                                                                      |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Crane: 150 ton (Tier 3)                                                                     | 425        | 0      | 0.00       | 50%           | 0                  | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.00                          | 0.00  | 0.00E+00        | 0.00            | 0.00             | 0.00              |
| Earthwork/Concrete Equipment                                                                |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Excavator (CAT 336) (Tier 3)                                                                | 300        | 5      | 3.15       | 50%           | 3,150              | 0.1836          | 0.7475 | 1.50E-03                     | 2.5             | 0.15           | 0.19                          | 0.78  | 1.56E-03        | 2.60            | 0.16             | 0.15              |
| Side Boom (CAT 573) (Tier 0)                                                                | 225        | 5      | 3.15       | 50%           | 3,150              | 0.68            | 2.7    | 1.50E-03                     | 8.38            | 0.402          | 0.53                          | 2.11  | 1.17E-03        | 6.55            | 0.31             | 0.30              |
| Dozer (CAT D8) (Tier 3)                                                                     | 325        | 3      | 3.15       | 50%           | 1,890              | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.11                          | 0.57  | 1.02E-03        | 1.69            | 0.10             | 0.10              |
| Vehicles                                                                                    |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Low Boy Truck (Tier 3)                                                                      | 200        | 4      | 2.94       | 50%           | 2,352              | 0.1836          | 0.7475 | 1.50E-03                     | 2.5             | 0.15           | 0.10                          | 0.39  | 7.78E-04        | 1.30            | 0.08             | 0.08              |
| Contractor Truck (1/2 ton pickup) (Tier 3)                                                  | 350        | 5      | 2.73       | 50%           | 2,730              | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.18                          | 0.89  | 1.58E-03        | 2.63            | 0.16             | 0.15              |
| Inspector Trucks (1/2 ton Pickup) (Tier 3)                                                  | 350        | 3      | 2.73       | 50%           | 1,638              | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.11                          | 0.53  | 9.48E-04        | 1.58            | 0.09             | 0.09              |
| Surveyor Trucks (1/2 ton Pickup) (Tier 3)                                                   | 350        | 2      | 2.73       | 50%           | 1,092              | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.07                          | 0.36  | 6.32E-04        | 1.05            | 0.06             | 0.06              |
| Welder Rig (Tier 2)                                                                         | 350        | 3      | 2.73       | 50%           | 1,638              | 0.1669          | 0.8425 | 1.50E-03                     | 4.3351          | 0.1316         | 0.11                          | 0.53  | 9.48E-04        | 2.74            | 0.08             | 0.08              |
| Boom Truck (5 Tons) (Tier 2)                                                                | 400        | 1      | 2.10       | 50%           | 420                | 0.1669          | 0.8425 | 1.50E-03                     | 4.3351          | 0.1316         | 0.03                          | 0.16  | 2.78E-04        | 0.80            | 0.02             | 0.02              |
| Fuel Truck (5 ton) (Tier 3)                                                                 | 400        | 1      | 2.10       | 50%           | 420                | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.03                          | 0.16  | 2.78E-04        | 0.46            | 0.03             | 0.03              |
| Water Truck (5 ton) (Tier 0)                                                                | 400        | 1      | 2.10       | 50%           | 420                | 0.68            | 2.7    | 1.50E-03                     | 8.38            | 0.402          | 0.13                          | 0.50  | 2.78E-04        | 1.55            | 0.07             | 0.07              |
| Employee Vehicles (1/2 pickups) (Tier 3)                                                    | 350        | 8      | 3.15       | 50%           | 5,040              | 0.1669          | 0.8425 | 1.50E-03                     | 2.5             | 0.15           | 0.32                          | 1.64  | 2.92E-03        | 4.86            | 0.29             | 0.28              |
| Pipe Stinging Truck (Tier 3)                                                                | 200        | 2      | 2.10       | 50%           | 840                | 0.3085          | 0.7475 | 1.50E-03                     | 4               | 0.1316         | 0.06                          | 0.14  | 2.78E-04        | 0.74            | 0.02             | 0.02              |
| Air Compressors                                                                             |            |        |            |               |                    |                 |        |                              |                 | •              |                               | •     |                 |                 |                  |                   |
| Air Compressor (Tier 2)                                                                     | 50         | 3      | 2.52       | 50%           | 1,512              | 0.2789          | 1.5323 | 1.50E-03                     | 4.7279          | 0.3389         | 0.02                          | 0.13  | 1.25E-04        | 0.39            | 0.03             | 0.03              |
| Miscellaneous Equipment                                                                     |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Water Pumps (Tier 2)                                                                        | 5          | 3      | 3.20       | 50%           | 1,920              | 0.5508          | 4.1127 | 1.50E-03                     | 4.3             | 0.5            | 0.01                          | 0.04  | 1.59E-05        | 0.05            | 0.01             | 0.01              |
| Portable Light Plant (Tier 2)                                                               | 25         | 3      | 3.20       | 50%           | 1,920              | 0.438           | 2.161  | 1.50E-03                     | 4.4399          | 0.2665         | 0.02                          | 0.11  | 7.94E-05        | 0.23            | 0.01             | 0.01              |
| Mud Pumps (Tier 2)                                                                          | 25         | 2      | 3.20       | 50%           | 1,280              | 0.438           | 2.161  | 1.50E-03                     | 4.4399          | 0.2665         | 0.02                          | 0.08  | 5.29E-05        | 0.16            | 0.01             | 0.01              |
| Tree Cutting Hot Saw (Tier 2)                                                               | 200        | 1      | 2.05       | 50%           | 410                | 0.3085          | 0.7475 | 1.50E-03                     | 4               | 0.1316         | 0.03                          | 0.07  | 1.36E-04        | 0.36            | 0.01             | 0.01              |
| Boring Machine (Tier 0)                                                                     | 600        | 2      | 3.20       | 50%           | 1,280              | 0.68            | 2.7    | 1.50E-03                     | 8.38            | 0.402          | 0.58                          | 2.29  | 1.27E-03        | 7.10            | 0.34             | 0.33              |
| Carry Deck Loader                                                                           | 400        | 1      | 3.75       | 50%           | 750                | 0.1669          | 0.8425 | 1.50E-03                     | 4.3351          | 0.1316         | 0.06                          | 0.28  | 4.96E-04        | 1.43            | 0.04             | 0.04              |
| Generator                                                                                   | 10         | 2      | 3.75       | 50%           | 1,500              | 0.5508          | 4.1127 | 1.50E-03                     | 4.3             | 0.5            | 0.01                          | 0.07  | 2.48E-05        | 0.07            | 0.01             | 0.01              |
| Backhoe (CAT 416F)                                                                          | 90         | 1      | 3.75       | 50%           | 750                | 0.3672          | 2.3655 | 1.50E-03                     | 4.7             | 0.24           | 0.03                          | 0.18  | 1.12E-04        | 0.35            | 0.02             | 0.02              |
| Mini Excavator                                                                              | 25         | 2      | 3.75       | 50%           | 1,500              | 0.438           | 2.161  | 1.50E-03                     | 4.4399          | 0.2665         | 0.02                          | 0.09  | 6.20E-05        | 0.18            | 0.01             | 0.01              |
| Dump Trucks                                                                                 | 300        | 2      | 3.75       | 50%           | 1,500              | 0.3085          | 0.7475 | 1.50E-03                     | 4               | 0.1316         | 0.15                          | 0.37  | 7.44E-04        | 1.98            | 0.07             | 0.06              |
|                                                                                             |            |        |            |               |                    |                 |        |                              |                 | •              | voc                           | со    | SO <sub>2</sub> | NOx             | PM <sub>10</sub> | PM <sub>2.5</sub> |
| Total Estimated Project Emissions (Tons/Project/Year)                                       |            |        |            |               |                    |                 |        |                              |                 |                | 2.97                          | 12.80 | 0.02            | 41.92           | 2.14             | 2.07              |
| Total Estimated Emissions - Metropolitan St. Louis Air                                      |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Quality Control Region (Tons/Project/Year)                                                  |            |        |            |               |                    |                 |        |                              |                 |                | 2.97                          | 12.80 | 0.02            | 41.92           | 2.14             | 2.07              |
| Total Fatimated Emissions - January County 1985-1-                                          |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| Total Estimated Emissions - Jersey County, Illinois<br>maintenance area (Tons/Project/Year) |            |        |            |               |                    |                 |        |                              |                 |                | 0.00                          | 0.00  | 0.00            | 0.00            | 0.00             | 0.00              |
| Total Estimated Emissions non-attainment and                                                |            |        |            |               |                    |                 |        |                              |                 |                |                               |       |                 |                 |                  |                   |
| maintenance areas                                                                           |            |        |            |               |                    |                 |        |                              |                 |                | 2.97                          | 12.80 | 0.02            | 41.92           | 2.14             | 2.07              |

#### Notes:

VMT per Day for North County Extension:  $^{\mathsf{5}}$ 

<sup>2</sup> Assume 100 hour work weeks and 4 weeks per month.

 $<sup>^{\</sup>rm 3}\,$  Assume Hydrocarbon(HC) approximately equal to VOCs.

<sup>&</sup>lt;sup>4</sup> Assumes Ultra Low Sulfur Diesel Fuel of 15ppm sulfur.

<sup>&</sup>lt;sup>5</sup> Per the Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition, all PM emissions are assumed to be smaller than 10 microns (PM 10) and 97% of the PM is assumed to be smaller than 2.5 microns (PM 2.5) and all emissions are based on the assumption that all non-road engines will be either Tier 0, Tier 2 or Tier 3 Compliant (as noted). For the purpose of this estimate, all emissions sources are conservatively assumed to be desiel powered.

#### Table 9A-3

| Table 9A-3                                                                                               |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
|----------------------------------------------------------------------------------------------------------|-------|--------|--------------------------|--------------|--------|------------------------|-----------------------------|---------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------|------------------------------------------------|
|                                                                                                          |       | Е      | stimated O               | perating Hou | rs     | Inform                 | nation                      | Emission                        | n Factors <sup>1</sup>           |                                      | nated Emis                                    |                                                |
|                                                                                                          |       | 2      | 4-Inch Pipe<br>Months at |              | Total  | W: mean vehicle        | material<br>Silt<br>Content | E: based<br>on PM <sub>10</sub> | E: based<br>on PM <sub>2.5</sub> | VM1:<br>Vehicle<br>Miles<br>Traveled | Particulat<br>e PM <sub>10</sub><br>(tons per | Particulat<br>e PM <sub>2.5</sub><br>(tons per |
| Equipment Type                                                                                           | HP    | Number | Project                  | Utilization  | Hours  | Wt (tons) <sup>2</sup> | (%) <sup>3</sup>            | (Ib/VMT)                        | (Ib/VMT)                         | (mi per                              | project)                                      | project)                                       |
| Cranes                                                                                                   | 1     | 1      | 1                        |              |        |                        | ı                           |                                 |                                  |                                      | ı                                             |                                                |
| Crane: 150 ton (Tier 3)                                                                                  | 425   | 0      | 0                        | 0.5          | 0      | 150                    | 8.5%                        | 6.40                            | 0.64                             | 0                                    | 0.00                                          | 0.00                                           |
| Earthwork/Concrete Equipment                                                                             |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Excavator (CAT 336) (Tier 3)                                                                             | 300   | 30     | 4.16                     | 0.5          | 24,960 | 24                     | 8.5%                        | 2.80                            | 0.28                             | 895                                  | 1.26                                          | 0.13                                           |
| Side Boom (CAT 573) (Tier 0)                                                                             | 225   | 30     | 4.16                     | 0.5          | 24,960 | 35                     | 8.5%                        | 3.32                            | 0.33                             | 895                                  | 1.49                                          | 0.15                                           |
| Dozer (CAT D8) (Tier 3)                                                                                  | 325   | 20     | 4.16                     | 0.5          | 16,640 | 40                     | 8.5%                        | 3.53                            | 0.35                             | 895                                  | 1.58                                          | 0.16                                           |
| Vehicles                                                                                                 |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Low Boy Truck (Tier 3)                                                                                   | 200   | 5      | 4.48                     | 0.5          | 4,480  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 964                                  | 0.78                                          | 0.08                                           |
| Contractor Truck (1/2 ton pickup) (Tier 3)                                                               | 350   | 30     | 4.16                     | 0.5          | 24,960 | 7                      | 8.5%                        | 1.61                            | 0.16                             | 895                                  | 0.72                                          | 0.07                                           |
| Inspector Trucks (1/2 ton Pickup) (Tier 3)                                                               | 350   | 20     | 4.16                     | 0.5          | 16,640 | 7                      | 8.5%                        | 1.61                            | 0.16                             | 895                                  | 0.72                                          | 0.07                                           |
| Surveyor Trucks (1/2 ton Pickup) (Tier 3)                                                                | 350   | 5      | 4.16                     | 0.5          | 4,160  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 895                                  | 0.72                                          | 0.07                                           |
| Welder Rig (Tier 2)                                                                                      | 350   | 10     | 4.16                     | 0.5          | 8,320  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 895                                  | 0.72                                          | 0.07                                           |
| Boom Truck (5 Tons) (Tier 2)                                                                             | 400   | 3      | 3.2                      | 0.5          | 1,920  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| Fuel Truck (5 ton) (Tier 3)                                                                              | 400   | 2      | 3.2                      | 0.5          | 1,280  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| Water Truck (5 ton) (Tier 0)                                                                             | 400   | 2      | 3.2                      | 0.5          | 1,280  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| Employee Vehicles (1/2 pickups) (Tier 3)                                                                 | 350   | 40     | 4.8                      | 0.5          | 38,400 | 18.0                   | 8.5%                        | 2.46                            | 0.25                             | 1033                                 | 1.27                                          | 0.13                                           |
| Employee Vehicles (cars) (Tier 3)                                                                        | 150   | 35     | 4.8                      | 0.5          | 33,600 | 18.0                   | 8.5%                        | 2.46                            | 0.25                             | 1033                                 | 1.27                                          | 0.13                                           |
| Pipe Stinging Truck (Tier 3)                                                                             | 200   | 5      | 3.2                      | 0.5          | 3,200  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| R/W Mowing Tractors (Tier 2)                                                                             | 75    | 5      | 1.6                      | 0.5          | 1,600  | 0.83                   | 8.5%                        | 0.62                            | 0.06                             | 344                                  | 0.11                                          | 0.01                                           |
| Air Compressors                                                                                          | -     |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Air Compressor (Tier 2)                                                                                  | 50    | 10     | 3.84                     | 0.5          | 7,680  | 1.1                    | 8.5%                        | 0.69                            | 0.07                             | 827                                  | 0.29                                          | 0.03                                           |
| Miscellaneous Equipment                                                                                  |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Water Pumps (Tier 2)                                                                                     | 5     | 10     | 3.2                      | 0.5          | 6,400  | 15                     | 8.5%                        | 2.27                            | 0.23                             | 689                                  | 0.78                                          | 0.08                                           |
| Portable Light Plant (Tier 2)                                                                            | 25    | 10     | 3.2                      | 0.5          | 6,400  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| Mud Pumps (Tier 2)                                                                                       | 25    | 4      | 3.2                      | 0.5          | 2,560  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| Tree Cutting Hot Saw (Tier 2)                                                                            | 200   | 2      | 2.05                     | 0.5          | 820    | 7                      | 8.5%                        | 1.61                            | 0.16                             | 441                                  | 0.36                                          | 0.04                                           |
| Boring Machine (Tier 0)                                                                                  | 600   | 2      | 3.2                      | 0.5          | 1,280  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 689                                  | 0.55                                          | 0.06                                           |
| Carry Deck Loader                                                                                        | 400   | 2      | 3.75                     | 0.5          | 1,500  | 15                     | 8.5%                        | 2.27                            | 0.23                             | 807                                  | 0.92                                          | 0.09                                           |
| Generator                                                                                                | 10    | 4      | 3.75                     | 0.5          | 3,000  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 807                                  | 0.65                                          | 0.06                                           |
| Backhoe (CAT 416F)                                                                                       | 90    | 2      | 3.75                     | 0.5          | 1,500  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 807                                  | 0.65                                          | 0.06                                           |
| Mini Excavator                                                                                           | 25    | 4      | 3.75                     | 0.5          | 3,000  | 7                      | 8.5%                        | 1.61                            | 0.16                             | 807                                  | 0.65                                          | 0.06                                           |
| Dump Trucks                                                                                              | 300   | 4      | 3.75                     | 0.5          | 3,000  | 15                     | 8.5%                        | 2.27                            | 0.23                             | 807                                  | 0.92                                          | 0.09                                           |
|                                                                                                          |       | -      | 3.73                     | 0.5          | 3,000  | 15                     | 0.570                       | 2.21                            | 0.23                             | 007                                  | 0.32                                          | 0.03                                           |
| Total Estimated Project Emissions (Tons/Project/Year)<br>Uncontrolled                                    |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 19.72                                         | 1.97                                           |
|                                                                                                          | †     |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Total Estimated Emissions - Metropolitan St. Louis Air<br>Quality Control Region (Tons/Project/Year) -   |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Uncontrolled                                                                                             |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 4.50                                          | 0.45                                           |
|                                                                                                          | †     |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Total Estimated Emissions - Jersey County, Illinois                                                      |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 5.36                                          | 0.54                                           |
| maintenance area (Tons/Project/Year) - Uncontrolled                                                      | +     |        |                          |              |        |                        |                             |                                 |                                  |                                      | 5.36                                          | 0.54                                           |
| Total Estimated Emissions non-attainment and                                                             |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| maintenance areas - Uncontrolled<br>Total Estimated Project Emissions (Tons/Project/Year)                | 1     |        |                          |              |        |                        |                             |                                 |                                  |                                      | 9.86                                          | 0.99                                           |
| Controlled                                                                                               |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 11.83                                         | 1.18                                           |
|                                                                                                          | †     |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Total Estimated Emissions - Metropolitan St. Louis Air<br>Quality Control Region (Tons/Project/Year) -   |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Controlled                                                                                               |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 2.56                                          | 0.26                                           |
|                                                                                                          | †     |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Total Estimated Emissions - Jersey County, Illinois<br>maintenance area (Tons/Project/Year) - Controlled |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 3.22                                          | 0.32                                           |
| mamenance area (10ns/rroject/Year) - Controlled                                                          | 1     |        |                          |              |        |                        |                             |                                 |                                  |                                      | 3.22                                          | 0.32                                           |
| Total Estimated Emissions non-attainment and                                                             |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | F 70                                          | 0.50                                           |
| maintenance areas - Controlled                                                                           |       |        |                          |              |        |                        |                             |                                 |                                  |                                      | 5.78                                          | 0.58                                           |
|                                                                                                          |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| Estimated Travel Distances:                                                                              |       |        | -                        |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| E E                                                                                                      |       |        |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |
| VMT per Day for 24-inch Pipeline: <sup>5</sup> Water Spray Control Efficiency <sup>6</sup>               | 7.175 | mi.    |                          |              |        |                        |                             |                                 |                                  |                                      |                                               |                                                |

# Notes:

<sup>13.2 –</sup> Introduction to Fugitive Dust Sources Final Section of 13.2.2 Unpaved Roads (November 2006) 13.2.2. Unpaved Roads

<sup>&</sup>lt;sup>2</sup> Mean Vehicle Weight for equipment engines obtained from Dataquest, 2006 and public sources (Caterpillar home page and Internet).

<sup>&</sup>lt;sup>3</sup> Surface Material Silt Content estimated based on similar projects and data from AP-42, Chapter 13.2.2 Table 13.2-1 Construction Sites. <sup>4</sup> Boring Machine is moved into place and does not move on a daily basis; therefore, emissions are not calculated for this piece of equipment.

 $<sup>^{\</sup>rm 5}$  Assumed that each piece of equipment travels a length of 25% of the ROW spread on a daily basis.

<sup>&</sup>lt;sup>6</sup> Based on low end of test data range of 40% to 70% for PM-10 from, obtained from background Document Emission Factor Documentation for AP-42, Section 13.2.2 Unpaved Roads Final Report (September 1998).

### Table 9A-4

|                                                                                                          | ı         | 1      | •            | Table 9A-    | 4     | 1                     |                             | 1                               |                                  |                              |                                               |                                                |
|----------------------------------------------------------------------------------------------------------|-----------|--------|--------------|--------------|-------|-----------------------|-----------------------------|---------------------------------|----------------------------------|------------------------------|-----------------------------------------------|------------------------------------------------|
|                                                                                                          |           | E      | stimated O   | perating Hou | rs    | Inforn                | nation                      | Emission                        | Factors <sup>1</sup>             | Estin                        | nated Emis                                    | sions                                          |
|                                                                                                          |           |        | Months at    | %            | Total | W: mean<br>vehicle Wt | material<br>Silt<br>Content | E: based<br>on PM <sub>10</sub> | E: based<br>on PM <sub>2.5</sub> | Vehicle<br>Miles<br>Traveled | Particulat<br>e PM <sub>10</sub><br>(tons per | Particulat<br>e PM <sub>2.5</sub><br>(tons per |
| Equipment Type                                                                                           | HP        | Number | Project      | Utilization  | Hours | (tons) <sup>2</sup>   | (%) <sup>3</sup>            | (lb/VMT)                        | (lb/VMT)                         | (mi per                      | project)                                      | project)                                       |
| Cranes                                                                                                   |           | I -    | 1 -          | 1            | _     |                       |                             |                                 |                                  | _                            |                                               |                                                |
| Crane: 150 ton (Tier 3)                                                                                  | 425       | 0      | 0            | 0.5          | 0     | 150                   | 8.5%                        | 6.40                            | 0.64                             | 0                            | 0.00                                          | 0.00                                           |
| Earthwork/Concrete Equipment                                                                             | 1         | 1      | 1            |              |       | 1                     |                             |                                 | l                                |                              |                                               |                                                |
| Excavator (CAT 336) (Tier 3)                                                                             | 300       | 5      | 3.15         | 0.5          | 3,150 | 24                    | 8.5%                        | 2.80                            | 0.28                             | 148                          | 0.21                                          | 0.02                                           |
| Side Boom (CAT 573) (Tier 0)                                                                             | 225       | 5      | 3.15         | 0.5          | 3,150 | 35                    | 8.5%                        | 3.32                            | 0.33                             | 148                          | 0.25                                          | 0.02                                           |
| Dozer (CAT D8) (Tier 3) Vehicles                                                                         | 325       | 3      | 3.15         | 0.5          | 1,890 | 40                    | 8.5%                        | 3.53                            | 0.35                             | 148                          | 0.26                                          | 0.03                                           |
|                                                                                                          |           | 1 _    | 1            | T            |       | _                     |                             |                                 |                                  |                              |                                               |                                                |
| Contractor Truck (1/2 ton pickup) (Tier 3)                                                               | 350       | 5      | 2.73         | 0.5          | 2,730 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 128                          | 0.10                                          | 0.01                                           |
| Inspector Trucks (1/2 ton Pickup) (Tier 3)                                                               | 350       | 3      | 2.73         | 0.5          | 1,638 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 128                          | 0.10                                          | 0.01                                           |
| Surveyor Trucks (1/2 ton Pickup) (Tier 3)                                                                | 350       | 2      | 2.73         | 0.5          | 1,092 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 128                          | 0.10                                          | 0.01                                           |
| Welder Rig (Tier 2)                                                                                      | 350       | 3      | 2.73         | 0.5          | 1,638 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 128                          | 0.10                                          | 0.01                                           |
| Boom Truck (5 Tons) (Tier 2)                                                                             | 400       | 1      | 2.1          | 0.5          | 420   | 7                     | 8.5%                        | 1.61                            | 0.16                             | 98                           | 0.08                                          | 0.01                                           |
| Fuel Truck (5 ton) (Tier 3)                                                                              | 400       | 1      | 2.1          | 0.5          | 420   | 7                     | 8.5%                        | 1.61                            | 0.16                             | 98                           | 0.08                                          | 0.01                                           |
| Water Truck (5 ton) (Tier 0)                                                                             | 400       | 1      | 2.1          | 0.5          | 420   | 7                     | 8.5%                        | 1.61                            | 0.16                             | 98                           | 0.08                                          | 0.01                                           |
| Employee Vehicles (1/2 pickups) (Tier 3)                                                                 | 350       | 8      | 3.15         | 0.5          | 5,040 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 148                          | 0.12                                          | 0.01                                           |
| Employee Vehicles (cars) (Tier 3)                                                                        | 150       | 4      | 3.15         | 0.5          | 2,520 | 18.0                  | 8.5%                        | 2.46                            | 0.25                             | 148                          | 0.18                                          | 0.02                                           |
| Pipe Stinging Truck (Tier 3)  Air Compressors                                                            | 200       | 2      | 2.1          | 0.5          | 840   | 18.0                  | 8.5%                        | 2.46                            | 0.25                             | 98                           | 0.12                                          | 0.01                                           |
|                                                                                                          | F0        | 1 40   | 0.04         | 0.5          | 7.000 | 1 44                  | 0.50/                       | 0.00                            | 0.07                             | 400                          | 0.00                                          | 0.04                                           |
| Air Compressor (Tier 2)  Miscellaneous Equipment                                                         | 50        | 10     | 3.84         | 0.5          | 7,680 | 1.1                   | 8.5%                        | 0.69                            | 0.07                             | 180                          | 0.06                                          | 0.01                                           |
| Water Pumps (Tier 2)                                                                                     | -         | 10     | 2.2          | 0.5          | 6.400 | 15                    | 0.50/                       | 2.27                            | 0.23                             | 150                          | 0.17                                          | 0.02                                           |
|                                                                                                          | 5         | 10     | 3.2          | 0.5          | 6,400 | 15<br>7               | 8.5%                        | 2.27                            |                                  |                              |                                               |                                                |
| Portable Light Plant (Tier 2)                                                                            | 25        | 10     | 3.2          | 0.5          | 6,400 |                       | 8.5%                        | 1.61                            | 0.16                             | 150                          | 0.12                                          | 0.01                                           |
| Mud Pumps (Tier 2)                                                                                       | 25        | 4      | 3.2          | 0.5          | 2,560 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 150                          | 0.12                                          | 0.01                                           |
| Tree Cutting Hot Saw (Tier 2)                                                                            | 200       | 2      | 2.05         | 0.5          | 820   | 7                     | 8.5%                        | 1.61                            | 0.16                             | 96                           | 0.08                                          | 0.01                                           |
| Boring Machine (Tier 0)                                                                                  | 600       |        | 3.2          | 0.5          | 1,280 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 150                          | 0.12                                          | 0.01                                           |
| Carry Deck Loader                                                                                        | 400       | 2      | 3.75         | 0.5          | 1,500 | 15                    | 8.5%                        | 2.27                            | 0.23                             | 176                          | 0.20                                          | 0.02                                           |
| Generator                                                                                                | 10        | 2      | 3.75         | 0.5          | 3,000 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 176                          | 0.14                                          | 0.01                                           |
| Backhoe (CAT 416F)                                                                                       | 90        | 4      | 3.75         | 0.5          | 1,500 | 7                     | 8.5%                        | 1.61                            | 0.16                             | 176<br>176                   | 0.14                                          | 0.01                                           |
| Mini Excavator                                                                                           | 25<br>300 | 4      | 3.75<br>3.75 | 0.5<br>0.5   | 3,000 | 15                    | 8.5%<br>8.5%                | 1.61<br>2.27                    | 0.16<br>0.23                     | 176                          | 0.14                                          | 0.01                                           |
| Dump Trucks Total Estimated Project Emissions (Tons/Project/Year) -                                      | 300       | 4      | 3.75         | 0.5          | 3,000 | 15                    | 0.5%                        | 2.21                            | 0.23                             | 176                          | 0.20                                          | 0.02                                           |
| Uncontrolled                                                                                             |           |        |              |              |       |                       |                             |                                 |                                  |                              | 3.28                                          | 0.33                                           |
| Total Estimated Emissions - Metropolitan St. Louis Air                                                   |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| Quality Control Region (Tons/Project/Year) -                                                             |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| Uncontrolled                                                                                             |           |        |              |              |       |                       |                             |                                 |                                  |                              | 0.75                                          | 0.07                                           |
| Total Estimated Emissions - Jersey County, Illinois                                                      |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| maintenance area (Tons/Project/Year) - Uncontrolled                                                      |           |        |              |              |       |                       |                             |                                 |                                  |                              | 0.89                                          | 0.09                                           |
| Total Estimated Emissions non-attainment and                                                             |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| maintenance areas - Uncontrolled                                                                         |           |        |              |              |       |                       |                             |                                 |                                  |                              | 1.64                                          | 0.16                                           |
| Total Estimated Project Emissions (Tons/Project/Year) -                                                  |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| Controlled                                                                                               |           |        |              |              |       |                       |                             |                                 |                                  |                              | 1.97                                          | 0.20                                           |
| Total Estimated Emissions - Metropolitan St. Louis Air                                                   |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| Quality Control Region (Tons/Project/Year) -                                                             |           |        |              |              |       |                       |                             |                                 |                                  |                              | 0.45                                          | 0.04                                           |
| Controlled                                                                                               | -         |        |              |              |       |                       |                             |                                 |                                  |                              | 0.45                                          | 0.04                                           |
| Total Estimated Emissions - Jersey County, Illinois<br>maintenance area (Tons/Project/Year) - Controlled |           |        |              |              |       |                       |                             |                                 |                                  |                              | 0.53                                          | 0.05                                           |
| Total Estimated Emissions non-attainment and maintenance areas - Controlled                              |           |        |              |              |       |                       |                             |                                 |                                  |                              | 0.97                                          | 0.10                                           |
|                                                                                                          |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
|                                                                                                          | 1         |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| Estimated Travel Distances:                                                                              |           |        |              |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |
| Estimated Travel Distances:  VMT per Day for 24-inch Pipeline:  5                                        | 1.5625    | mi.    | 1            |              |       |                       |                             |                                 |                                  |                              |                                               |                                                |

# Notes:

<sup>1</sup> Calculations based on equation (1a) [Emission Factor (lb/VMT): E = k\*[(s/12)^a]\*(W/3)^b] from EPA's AP 42 Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Are Sources Chapter 13.0 – Introduction to Miscellaneous Sources, Section 13.2 – Introduction to Fugitive Dust Sources Final Section of 13.2.2 Unpaved Roads (November 2006) 13.2.2. Unpaved Roads. Empirical constants used in this equation k, a, b where obtained from Table 13.2.2-2.

<sup>&</sup>lt;sup>2</sup> Mean Vehicle Weight for equipment engines obtained from Dataquest, 2006 and public sources (Caterpillar home page and Internet).

<sup>&</sup>lt;sup>3</sup> Surface Material Silt Content estimated based on similar projects and data from AP-42, Chapter 13.2.2 Table 13.2-1 Construction Sites.

<sup>&</sup>lt;sup>4</sup> Boring Machine is moved into place and does not move on a daily basis; therefore, emissions are not calculated for this piece of equipment.

 $<sup>^{\</sup>rm 5}$  Assumed that each piece of equipment travels a length of 25% of the ROW spread on a daily basis.

<sup>&</sup>lt;sup>6</sup> Based on low end of test data range of 40% to 70% for PM-10 from, obtained from background Document Emission Factor Documentation for AP-42, Section 13.2.2 Unpaved Roads Final Report (September 1998).

Table 9A-5 Material Handling Emission Calculation Basis Data (24-inch Pipeline,North County Extension)

| Project Aspect                    | Parameter                                                             | units  | 24-Inch   | North County<br>Extension |
|-----------------------------------|-----------------------------------------------------------------------|--------|-----------|---------------------------|
|                                   | Pipe Length                                                           | miles  | 59.2      | 6.0                       |
|                                   | Pipe Length                                                           | yards  | 104,192   | 10,560                    |
| A II A t-                         | Pipe Length                                                           | feet   | 312,576   | 31,680                    |
| All Aspects                       | Length in Agricultural Use <sup>1</sup>                               | miles  | 53        | 5                         |
|                                   | Length in Agricultural Use                                            | Yards  | 93,773    | 9,504                     |
|                                   | Length in Agricultural Use                                            | Feet   | 281,318   | 28,512                    |
|                                   | Pipe Diameter                                                         | inches | 24.0      | 24.0                      |
|                                   | Max Trench Bottom Width <sup>2</sup>                                  | feet   | 4.0       | 4.0                       |
|                                   | Max Trench Top Width                                                  | feet   | 15        | 15                        |
|                                   | Max Trench Width @ Top Soil Spoil Interface                           | feet   | 12.938    | 12.938                    |
|                                   | Total - Max Trench Depth Removed                                      | feet   | 8         | 8                         |
|                                   | Total - Trench Cross Sectional Area <sup>3</sup>                      | ft^2   | 76.00     | 76.00                     |
|                                   | Total - Trench Cross Sectional Area <sup>3</sup>                      | yd^2   | 8.44      | 8.44                      |
|                                   | Total - Volume of Soil Material Moved                                 | yd^3   | 879,380   | 89,126                    |
| Trench Spoil Pile                 | Spoil - Max Depth of Removed                                          | feet   | 6.5       | 6.5                       |
|                                   | Spoil - Cross Sectional Area                                          | ft^2   | 55.05     | 55.05                     |
|                                   | Spoil - Cross Sectional Area                                          | yd^2   | 6.12      | 6.12                      |
|                                   | Spoil - Volume of Material Moved                                      | yd^3   | 637,655   | 64,627                    |
|                                   | Spoil - Pile height                                                   | feet   | 5.2       | 5.2                       |
|                                   | Spoil - Pile base (width)                                             | feet   | 10.5      | 10.5                      |
|                                   | Spoil - Pile Face                                                     | feet   | 7.4       | 7.4                       |
|                                   | Spoil - Pile Surface Area <sup>4</sup>                                | ft^2   | 2,319,179 | 235,052                   |
|                                   | Spoil - Pile Surface Area <sup>4</sup>                                | yd^2   | 257,687   | 26,117                    |
|                                   | Top Soil - Max Depth of Topsoil Removed <sup>5</sup>                  | feet   | 1.5       | 1.5                       |
|                                   | Top Soil - Cross Sectional Area from Trench <sup>3</sup>              | ft^2   | 20.95     | 20.95                     |
|                                   | Top Soil - Cross Sectional Area from Trench <sup>3</sup>              | yd^2   | 2.33      | 2.33                      |
|                                   | Top Soil - Width of Top Soil Removed In Workspace <sup>6</sup>        | feet   | 31.49     | 31.49                     |
|                                   | Top Soil - Cross Sectional Area                                       | ft^2   | 45.69     | 45.69                     |
| Trench Top Soil Pile              | Top Soil - Cross Sectional Area                                       | yd^2   | 5.08      | 5.08                      |
| Tremen rop don't lie              | Top Soil - Volume of Material Moved                                   | yd^3   | 528,980   | 53,613                    |
|                                   | Top Soil - Pile height                                                | feet   | 4.6       | 4.6                       |
|                                   | Top Soil - Pile base (width)                                          | feet   | 9.2       | 9.2                       |
|                                   | Top Soil - Pile Face                                                  | feet   | 6.5       | 6.5                       |
|                                   | Top Soil - Pile Surface Area <sup>4</sup>                             | ft^2   | 674,437   | 68,355                    |
|                                   | Top Soil - Pile Surface Area 4                                        | yd^2   | 74,937    | 7,595                     |
|                                   | Top Soil - Max Depth of Topsoil Removed <sup>5</sup>                  | feet   | 1.5       | 1.5                       |
|                                   | Top Soil - Width of Extra Topsoil removed in Ag areas <sup>7</sup>    | feet   | 50        | 50                        |
|                                   | Top Soil - Additional Cross Sectional Area for Ag lands               | ft^2   | 75        | 75                        |
|                                   | Top Soil - Additional Cross Sectional Area for Ag lands               | yd^2   | 8.33      | 8.33                      |
| Agricultural Top Soil Removed     | Top Soil - Additional Volume of Material Moved in Ag Lands            | yd^3   | 781,440   | 79,200                    |
| g. localitation Top Ooli Normoved | Top Soil - Pile height for Additional Ag Soil Pile                    | feet   | 8.7       | 8.7                       |
|                                   | Top Soil - Pile base (width) for Additional Ag Soil Pile              | feet   | 17.3      | 17.3                      |
|                                   | Top Soil - Pile Face for Additional Ag Soil Pile                      | feet   | 12.2      | 12.2                      |
|                                   | Top Soil - Pile Surface Area for Additional Ag Soil Pile <sup>4</sup> | ft^2   | 3,445,433 | 349,199                   |
|                                   | Top Soil - Pile Surface Area for Additional Ag Soil Pile <sup>4</sup> | yd^2   | 382,826   | 38,800                    |

 $<sup>^{\</sup>rm 1}$  Assumed 90% of land in IL and 40% in MO was in agricultural use.

 $<sup>^{\</sup>rm 2}$  Assumed one foot of space between walls and each side of pipe.

 $<sup>^{\</sup>rm 3}$  Trench is a shape of a trapezoid.

<sup>&</sup>lt;sup>4</sup> Assume pile is a triangular mound, with 45 degree slopes, that runs the length of open trench, that base of pile equals Max Trench Top Width, and that shape of the end of pile is ignored.

<sup>5</sup> Used 1.5 feet as topsoil depth due to deeper topsoil layers anticipated in IL.

 $<sup>^{\</sup>rm 6}$  Equal to width of trench plus width of base of spoil pile and 6 foot buffer.

<sup>&</sup>lt;sup>7</sup> Assumed top soil removed in the agricultural areas is equal to two 25 foot travel lanes for 24" pipeline and one 15 foot travel lane for the North County Extension.

 Table 9A-6

 Material Handling & Wind Erosion Emission Calculation Basis Data (24-inch Pipeline, North County Extension)

| Site and Material Specific Information                |         |           |                        |  |  |  |  |  |
|-------------------------------------------------------|---------|-----------|------------------------|--|--|--|--|--|
|                                                       |         |           | Value                  |  |  |  |  |  |
| Parameters                                            | Units   | 24-Inch   | North County Extention |  |  |  |  |  |
| Mean Wind Speed (U) <sup>1</sup>                      | mph     | 9.1       |                        |  |  |  |  |  |
| Volume of Spoil Material Moved <sup>2</sup>           | yd^3    | 1,275,310 | 129,254                |  |  |  |  |  |
| Volume of Top Soil Material Moved <sup>2</sup>        | yd^3    | 2,620,841 | 265,626                |  |  |  |  |  |
| Density of Soil <sup>3</sup>                          | lb/yd^3 | 2         | 2,241.79               |  |  |  |  |  |
| Mass of Spoil Material Moved                          | tons    | 1,429,489 | 144,881                |  |  |  |  |  |
| Mass of Top Soil Material Moved                       | tons    | 2,937,687 | 297,739                |  |  |  |  |  |
| Working Surface Area of Spoil Piles <sup>4</sup>      | yd^2    | 13,058    | 13,058                 |  |  |  |  |  |
| Working Surface Area of Top Soil Piles <sup>4</sup>   | yd^2    | 23,197    | 23,197                 |  |  |  |  |  |
| Length of open trench/dig site 5                      | miles   | 3         | 3                      |  |  |  |  |  |
| Material Moisture Content - Spoil (M) <sup>6</sup>    | %       |           | 7.4                    |  |  |  |  |  |
| Material Moisture Content - Top Soil (M) <sup>7</sup> | %       | 12.0      |                        |  |  |  |  |  |

| Site and Ma                                                                                | terial Specific | Informatio | n                |                   |          |                        |                   |  |  |
|--------------------------------------------------------------------------------------------|-----------------|------------|------------------|-------------------|----------|------------------------|-------------------|--|--|
|                                                                                            |                 |            | 24-Inch          |                   | North    | North County Extension |                   |  |  |
| Parameters                                                                                 | Units           | TSP        | PM <sub>10</sub> | PM <sub>2.5</sub> | TSP      | PM <sub>10</sub>       | PM <sub>2.5</sub> |  |  |
| Handling Particulate Size Multiplier (k) 8                                                 |                 | 0.74       | 0.35             | 0.053             | 0.74     | 0.35                   | 0.053             |  |  |
| Handling Emission Factor Spoil Material <sup>9</sup>                                       | lb/ton          | 8.26E-04   | 3.91E-04         | 5.92E-05          | 8.26E-04 | 3.91E-04               | 5.92E-05          |  |  |
| Handling Emission Factor Top Soil Material <sup>9</sup>                                    | lb/ton          | 4.20E-04   | 1.99E-04         | 3.01E-05          | 4.20E-04 | 1.99E-04               | 3.01E-05          |  |  |
| Wind Erosion Emission Factor <sup>10</sup>                                                 | lb/yd^2         | 5.04E-02   | 2.52E-02         | 1.01E-02          | 5.04E-02 | 2.52E-02               | 1.01E-02          |  |  |
| Handling Spoil Emissions                                                                   | tons            | 0.59       | 0.28             | 0.04              | 0.060    | 0.028                  | 0.0043            |  |  |
| Handling Top Soil Emissions                                                                | tons            | 0.62       | 0.29             | 0.04              | 0.062    | 0.030                  | 0.0045            |  |  |
| Wind Erosion Spoil Pile Emissions                                                          | tons            | 0.33       | 0.16             | 0.07              | 0.329    | 0.164                  | 0.066             |  |  |
| Wind Erosion Top Soil Pile Emissions                                                       | tons            | 0.58       | 0.29             | 0.12              | 0.58     | 0.29                   | 0.12              |  |  |
| Total Emissions                                                                            | tons            | 2.12       | 1.03             | 0.27              | 1.04     | 0.51                   | 0.19              |  |  |
| Total Emissions - Metropolitan St. Louis Air Quality Control Region<br>(Tons/Project/Year) | tons            | 0.48       | 0.23             | 0.06              | 1.04     | 0.51                   | 0.19              |  |  |
| Total Emissions - Jersey County, Illinois maintenance area<br>(Tons/Project/Year)          | tons            | 0.58       | 0.28             | 0.07              | 0.00     | 0.00                   | 0.00              |  |  |
| Total Emissions non-attainment and maintenance areas                                       | tons            | 1.06       | 0.51             | 0.13              | 1.04     | 0.51                   | 0.19              |  |  |

# Notes:

<sup>&</sup>lt;sup>1</sup> St. Louis, Missouri (KSTL) Local Climatological Data, Normals, Means, and Extremes.

 $<sup>^{\</sup>rm 2}$  Volume doubled because material is removed and replaced.

<sup>&</sup>lt;sup>3</sup> Density from USDA, NRCS, *Soil Quality Indicators*, Medium textured soil 50% pore space.

<sup>&</sup>lt;sup>4</sup> Working Surface Area is the surface area of pile(s) adjacent to the open trench.

 $<sup>^{\</sup>rm 5}$  Assumed 3 miles of open trench on the 24" pipeline and 3 miles on the North County Extension.

 $<sup>^{6}</sup>$  Based on mean value listed in AP-42 Table 13.2.4-1, Municipal solid waste landfills, Sand.

 $<sup>^{7}</sup>$  Based on mean value listed in AP-42 Table 13.2.4-1, Municipal solid waste landfills, Cover.

<sup>&</sup>lt;sup>8</sup> Particle size multiplier obtained from values listed in AP-42 page 13.2.4-4.

<sup>&</sup>lt;sup>9</sup> Emission factor calculated using equation (1) in AP-42 Chapter 13.2.4, Emission Factor (lb/ton):  $E = k^0.0032^*[(U/5)^1.3]/[(M/2)^1.4]$ 

<sup>&</sup>lt;sup>10</sup> Emission factor calculated using questions in AP-42 Chapter 13.2.5 as detailed in Table 9A-6a.

### Table 9A-6a Wind Erosion Emission Factor Calculation Basis Data (24-inch Pipeline)

#### Basis for Calculations:

AP-42 Chapter 13.2.5 Industrial Wind Erosion

 $\mathsf{EF} = \mathsf{emission} \, \mathsf{factor}, \, \mathsf{g/m^2} \, (\mathsf{EF_c} \, \mathsf{is} \, \mathsf{for} \, \mathsf{chronic} \, \mathsf{conditions}, \, \mathsf{EF_a} \, \mathsf{is} \, \mathsf{for} \, \mathsf{acute} \, \mathsf{conditions})$ 

k = particle size multiplier, dimesionless

N = number of days of disturbances per year

erosion potential for disturbed area, g/m² (Per AP-42, erosion potential is assumed to be 0 between disturbances and for undisturbed areas.)
u\* = fiction velocity, m/s

u<sub>1</sub>\* = threshold friction velocity m/s (From Table 13.2.5-2, ut\* ranges from 0.54 m/s for fine coal dust to 1.33 m/s for roadbed material; From Table 13.2.5-2, ut\* = 1.02 m/s for overburden at a coal mine)

 ${\rm u_{10}}^{+}\,$  = fastest mile of wind, m/s, at reference anemometer height of 10 m.

A = disturbed area, m<sup>2</sup>

E = emissions, grams/year

Equation (1):  $u^* = 0.053 * u_{10}^+$ 

Equation (2):  $P_i = 58*(u^* - u_t^*)^2 + 25*(u^* - u_t^*)$ 

Equation (3): EF =  $k * \Sigma P_i$ 

Equation (4): E = EF \* A

#### Meteorological Information:

VMT per Day for 24-inch Pipeline: <sup>5</sup>

# St. Louis, MO (KSTL) Station: 1 WBAN13994

| Parameter                          | Value | Units  |  |  |  |  |  |  |  |
|------------------------------------|-------|--------|--|--|--|--|--|--|--|
| Anemometer Height (z) <sup>2</sup> | 10    | meters |  |  |  |  |  |  |  |
| MAX 2-minute Wind Speed:           | 53    | mph    |  |  |  |  |  |  |  |
| MAX 2-minute Wind Speed:           | 23.69 | m/s    |  |  |  |  |  |  |  |
| Roughness Height: 3                | 0.005 | meters |  |  |  |  |  |  |  |

# **Emission Factor Calculation:**

| Variable          | Both 24-Inch & North County<br>Extension |                                                                          |
|-------------------|------------------------------------------|--------------------------------------------------------------------------|
| u <sub>10</sub> * | 23.69                                    | For St. Louis, MO (KSTL) WBAN13994 u+ = 53 mph (23.69 m/s) at 10 m)      |
| u*                | 1.256                                    | Calculated using equation (1).                                           |
| u <sub>t</sub> *  | 1.02                                     | Overbuden from Table 13.2.5-2 was used                                   |
| P <sub>i</sub>    | 9.11                                     | Calculated using Equation (2). Note: If $u^* < u_t^*$ , then $P_i = 0$ . |
| N                 | 3                                        | Assume stockpile are disturbed 3 times during construction               |

| PM =>          | < 30 μm  | < 15 μm  | < 10 μm  | < 2.5 μm |
|----------------|----------|----------|----------|----------|
| k <sup>4</sup> | 1.0      | 0.6      | 0.5      | 0.2      |
| EF (g/m^2) 5   | 27.32    | 16.39    | 13.66    | 5.46     |
| EF (lb/yd^2)   | 5.04E-02 | 3.02E-02 | 2.52E-02 | 1.01E-02 |

#### Notes:

<sup>1</sup> National Oceanic and Atmospheric Administration, National Centers for Environmental Information. 2015. Local Climatological Data Annual Summary with Comparative Data – ST Louis Missouri (KSTL).

http://www.wcc.nrcs.usda.gov/ftpref/downloads/climate/windrose/

<sup>&</sup>lt;sup>2</sup>KSTL's Anemometer has been 10 meters since 1996, per the "anenometer\_height\_\_info" excel file found at the link below.

<sup>&</sup>lt;sup>3</sup> A typical roughness height of 0.5 cm (0.005 m) has been assumed. If a site a specific roughness height is available, it should be used.

<sup>&</sup>lt;sup>4</sup> Particle size multiplier obtained from values listed in AP-42 page 13.2.5-3.

<sup>&</sup>lt;sup>5</sup> Calculated using Equation (3) and daily condition variables.

Table 9A-7

Potential Greenhouse Gas Emissions (24-inch Pipeline - 24-Inch)

| 1 010                                                                                                | ential Greenhouse Gas Emissions (24-inch Pipeline - 24-inch) |        |             |               |         |         |                  |                       |           |                  |           |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------|-------------|---------------|---------|---------|------------------|-----------------------|-----------|------------------|-----------|
|                                                                                                      |                                                              | l      | Estimated O | perating Hour | s       | Emissio | n Factors (g     | g/hp-hr) <sup>1</sup> | Estimated | Emissions        | (tons/yr) |
|                                                                                                      |                                                              |        | 24-Inch     |               |         |         |                  |                       |           |                  |           |
|                                                                                                      |                                                              |        | Months at   |               | Total   |         |                  |                       |           |                  |           |
| Equipment Type                                                                                       | НР                                                           | Number | Project     | % Utilization | Hours 2 | CO2     | N <sub>2</sub> O | CH₄                   | CO2       | N <sub>2</sub> O | СН₄       |
| Earthwork/Concrete Equipment                                                                         |                                                              | ı      |             |               |         | -       |                  |                       | <u> </u>  |                  |           |
| Excavator (CAT 336) (Tier 3)                                                                         | 300                                                          | 30     | 4.2         | 50%           | 24,960  | 199.1   | 0.0111           | 0.0768                | 1643.56   | 0.09205          | 0.63436   |
| Side Boom (CAT 573) (Tier 0)                                                                         | 225                                                          | 30     | 4.2         | 50%           | 24,960  | 199.1   | 0.0111           | 0.0768                | 1232.67   | 0.06904          | 0.47577   |
| Dozer (CAT D8) (Tier 3)                                                                              | 325                                                          | 20     | 4.2         | 50%           | 16,640  | 199.1   | 0.0111           | 0.0768                | 1187.02   | 0.06648          | 0.45815   |
| Vehicles                                                                                             |                                                              |        |             |               |         |         |                  |                       |           |                  |           |
| Contractor Truck (1/2 ton pickup) (Tier 3)                                                           | 350                                                          | 30     | 4.2         | 50%           | 24,960  | 199.1   | 0.0111           | 0.0768                | 1917.49   | 0.10739          | 0.74008   |
| Inspector Trucks (1/2 ton Pickup) (Tier 3)                                                           | 350                                                          | 20     | 4.2         | 50%           | 16,640  | 199.1   | 0.0111           | 0.0768                | 1278.33   | 0.07159          | 0.49339   |
| Surveyor Trucks (1/2 ton Pickup) (Tier 3)                                                            | 350                                                          | 5      | 4.2         | 50%           | 4,160   | 199.1   | 0.0111           | 0.0768                | 319.58    | 0.01790          | 0.12335   |
| Welder Rig (Tier 2)                                                                                  | 350                                                          | 10     | 4.2         | 50%           | 8,320   | 199.1   | 0.0111           | 0.0768                | 639.16    | 0.03580          | 0.24669   |
| Boom Truck (5 Tons) (Tier 2)                                                                         | 400                                                          | 3      | 3.2         | 50%           | 1,920   | 199.1   | 0.0111           | 0.0768                | 168.57    | 0.00944          | 0.06506   |
| Fuel Truck (5 ton) (Tier 3)                                                                          | 400                                                          | 2      | 3.2         | 50%           | 1,280   | 199.1   | 0.0111           | 0.0768                | 112.38    | 0.00629          | 0.04337   |
| Water Truck (5 ton) (Tier 0)                                                                         | 400                                                          | 2      | 3.2         | 50%           | 1,280   | 199.1   | 0.0111           | 0.0768                | 112.38    | 0.00629          | 0.04337   |
| Employee Vehicles (1/2 pickups) (Tier 3)                                                             | 350                                                          | 40     | 4.8         | 50%           | 38,400  | 199.1   | 0.0111           | 0.0768                | 2949.98   | 0.16522          | 1.13859   |
| Employee Vehicles (cars) (Tier 3)                                                                    | 150                                                          | 35     | 4.8         | 50%           | 33,600  | 199.1   | 0.0111           | 0.0768                | 1106.24   | 0.06196          | 0.42697   |
| Pipe Stinging Truck (Tier 3)                                                                         | 200                                                          | 5      | 3.2         | 50%           | 3,200   | 199.1   | 0.0111           | 0.0768                | 140.48    | 0.00787          | 0.05422   |
| R/W Mowing Tractors (Tier 2)                                                                         | 75                                                           | 5      | 1.6         | 50%           | 1,600   | 199.1   | 0.0111           | 0.0768                | 26.34     | 0.00148          | 0.01017   |
| Air Compressors                                                                                      |                                                              |        |             |               |         |         |                  |                       |           |                  |           |
| Air Compressor (Tier 2)                                                                              | 50                                                           | 10     | 3.8         | 50%           | 7,680   | 199.1   | 0.0111           | 0.0768                | 84.29     | 0.00472          | 0.03253   |
| Miscellaneous Equipment                                                                              |                                                              |        |             |               |         |         |                  |                       |           |                  |           |
| Water Pumps (Tier 2)                                                                                 | 5                                                            | 10     | 3.2         | 50%           | 6,400   | 199.1   | 0.0111           | 0.0768                | 7.02      | 0.00039          | 0.00271   |
| Portable Light Plant (Tier 2)                                                                        | 25                                                           | 10     | 3.2         | 50%           | 6,400   | 199.1   | 0.0111           | 0.0768                | 35.12     | 0.00197          | 0.01355   |
| Mud Pumps (Tier 2)                                                                                   | 25                                                           | 4      | 3.2         | 50%           | 2,560   | 199.1   | 0.0111           | 0.0768                | 14.05     | 0.00079          | 0.00542   |
| Tree Cutting Hot Saw (Tier 2)                                                                        | 200                                                          | 2      | 2.1         | 50%           | 820     | 199.1   | 0.0111           | 0.0768                | 36.00     | 0.00202          | 0.01389   |
| Boring Machine (Tier 0)                                                                              | 600                                                          | 2      | 3.2         | 50%           | 1,280   | 199.1   | 0.0111           | 0.0768                | 168.57    | 0.00944          | 0.06506   |
| Carry Deck Loader                                                                                    | 400                                                          | 2      | 3.8         | 50%           | 1,500   | 199.1   | 0.0111           | 0.0768                | 131.70    | 0.00738          | 0.05083   |
| Generator                                                                                            | 10                                                           | 4      | 3.8         | 50%           | 3,000   | 199.1   | 0.0111           | 0.0768                | 6.58      | 0.00037          | 0.00254   |
| Backhoe (CAT 416F)                                                                                   | 90                                                           | 2      | 3.8         | 50%           | 1,500   | 199.1   | 0.0111           | 0.0768                | 29.63     | 0.00166          | 0.01144   |
| Mini Excavator                                                                                       | 25                                                           | 4      | 3.8         | 50%           | 3,000   | 199.1   | 0.0111           | 0.0768                | 16.46     | 0.00092          | 0.00635   |
| Dump Trucks                                                                                          | 300                                                          | 4      | 3.8         | 50%           | 3,000   | 199.1   | 0.0111           | 0.0768                | 197.54    | 0.01106          | 0.07624   |
|                                                                                                      |                                                              |        | •           |               |         |         |                  |                       | CO2       | N2O              | CH4       |
| Total Estimated Project Emissions (Tons/Project/Year)                                                |                                                              |        |             |               |         |         |                  |                       | 13,561.1  | 0.76             | 5.23      |
|                                                                                                      |                                                              |        |             |               |         |         |                  |                       |           |                  |           |
| Total Estimated Emissions - Metropolitan St. Louis Air<br>Quality Control Region (Tons/Project/Year) |                                                              |        |             |               |         |         |                  |                       | 3,092.5   | 0.17             | 1.19      |
|                                                                                                      |                                                              |        |             |               |         |         |                  |                       | 0,002.0   | J.11             |           |
| Total Estimated Emissions - Jersey County, Illinois                                                  |                                                              |        |             |               |         |         |                  |                       | 2 600 4   | 0.21             | 1.42      |
| maintenance area (Tons/Project/Year) Total Estimated Emissions non-attainment and                    |                                                              |        |             |               |         |         |                  |                       | 3,688.1   | 0.21             | 1.42      |
| maintenance areas                                                                                    |                                                              |        |             |               |         |         |                  |                       | 6,780.6   | 0.38             | 2.62      |

### Notes:

28.6 (in Kg/TJ)

2 Assume 100 hour work weeks and 4 weeks per month.

<sup>&</sup>lt;sup>1</sup> Original Default Factors given in Kg/TJ for Diesel Off-Road Mobile Sources: 74,100 4.15

Table 9A-8

Potential Greenhouse Gas Emissions (North County Extension)

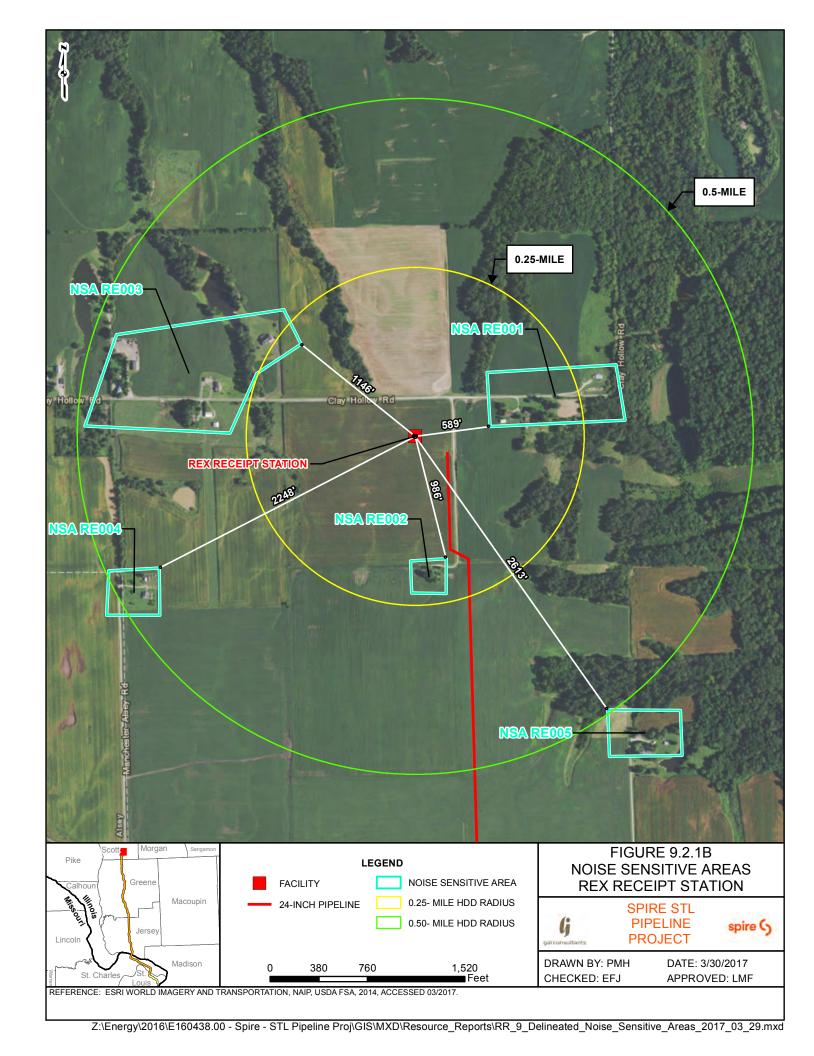
| Potential Greenhouse Gas Emissions (North County Extension) |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|----------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated Operating Hours                                   |                                                                                           | Emissio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Factors (   | g/hp-hr) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Estimated                                                           | d Emissions                                                           | s (tons/yr)               |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                               | <u> </u>                  |                            |                           | (=== , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                           | Months at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HP                                                          | Number                                                                                    | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % Utilization | Hours <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO <sub>2</sub>                                                     | N <sub>2</sub> O                                                      | CH₄                       | CO <sub>2</sub>            | N <sub>2</sub> O          | CH₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 300                                                         | 5                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 124.45                     | 0.00697                   | 0.04803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 225                                                         | 5                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 93.34                      | 0.00523                   | 0.03603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 325                                                         | 3                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 80.89                      | 0.00453                   | 0.03122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 350                                                         | 5                                                                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 125.84                     | 0.00705                   | 0.04857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350                                                         | 3                                                                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 75.50                      | 0.00423                   | 0.02914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350                                                         | 2                                                                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 50.33                      | 0.00282                   | 0.01943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350                                                         | 3                                                                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 75.50                      | 0.00423                   | 0.02914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400                                                         | 1                                                                                         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 22.12                      | 0.00124                   | 0.00854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400                                                         | 1                                                                                         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 22.12                      | 0.00124                   | 0.00854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400                                                         | 1                                                                                         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 22.12                      | 0.00124                   | 0.00854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350                                                         | 8                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 3,024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 232.31                     | 0.01301                   | 0.08966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 150                                                         | 4                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 49.78                      | 0.00279                   | 0.01921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200                                                         | 2                                                                                         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 22.12                      | 0.00124                   | 0.00854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50                                                          | 3                                                                                         | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 9.96                       | 0.00056                   | 0.00384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                                           |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                           | 3                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 1.26                       | 0.00007                   | 0.00049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25                                                          | 3                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 1,152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.1                                                               | 0.0111                                                                | 0.0768                    | 6.32                       | 0.00035                   | 0.00244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25                                                          | 2                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 4.21                       | 0.00024                   | 0.00163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200                                                         | 1                                                                                         | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 10.80                      | 0.00060                   | 0.00417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 600                                                         | 2                                                                                         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 101.14                     | 0.00566                   | 0.03904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 400                                                         | 1                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 39.51                      | 0.00221                   | 0.01525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10                                                          | 2                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 1.98                       | 0.00011                   | 0.00076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 90                                                          | 1                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 8.89                       | 0.00050                   | 0.00343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25                                                          | 2                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 4.94                       | 0.00028                   | 0.00191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 300                                                         | 2                                                                                         | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50%           | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.1                                                               | 0.0111                                                                | 0.0768                    | 59.26                      | 0.00332                   | 0.02287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | CO2                        | N2O                       | CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | 1 244 7                    | 0.07                      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | 1,244.7                    | 0.01                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | 4 244 7                    | 0.07                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | 1,244.7                    | 0.07                      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           |                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | 0.0                        | 0.00                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                                                                       |                           | 1.244.7                    | 0.07                      | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | HP  300 225 325 350 350 350 350 400 400 400 350 150 200  50 50 25 25 200 600 400 10 90 25 | Norte   Nort | Stimated One  | HP   Number   North County Extension   North County Extension   North County Extension   Number   Nu | HP   Number   Months at   Project   Willization   Total   Hours   2 | HP   Number   Months at   Project   Willization   Total   Hours   CO2 | Estimated Operating Hours | Restimated Operating Hours | Estimated Operating Hours | Restimated Operating Hours   North County Extension   North County Extension   North County Extension   North County Extension   Total Project   Willization   Hours 2   CO2   N30   CH4   CH4 |

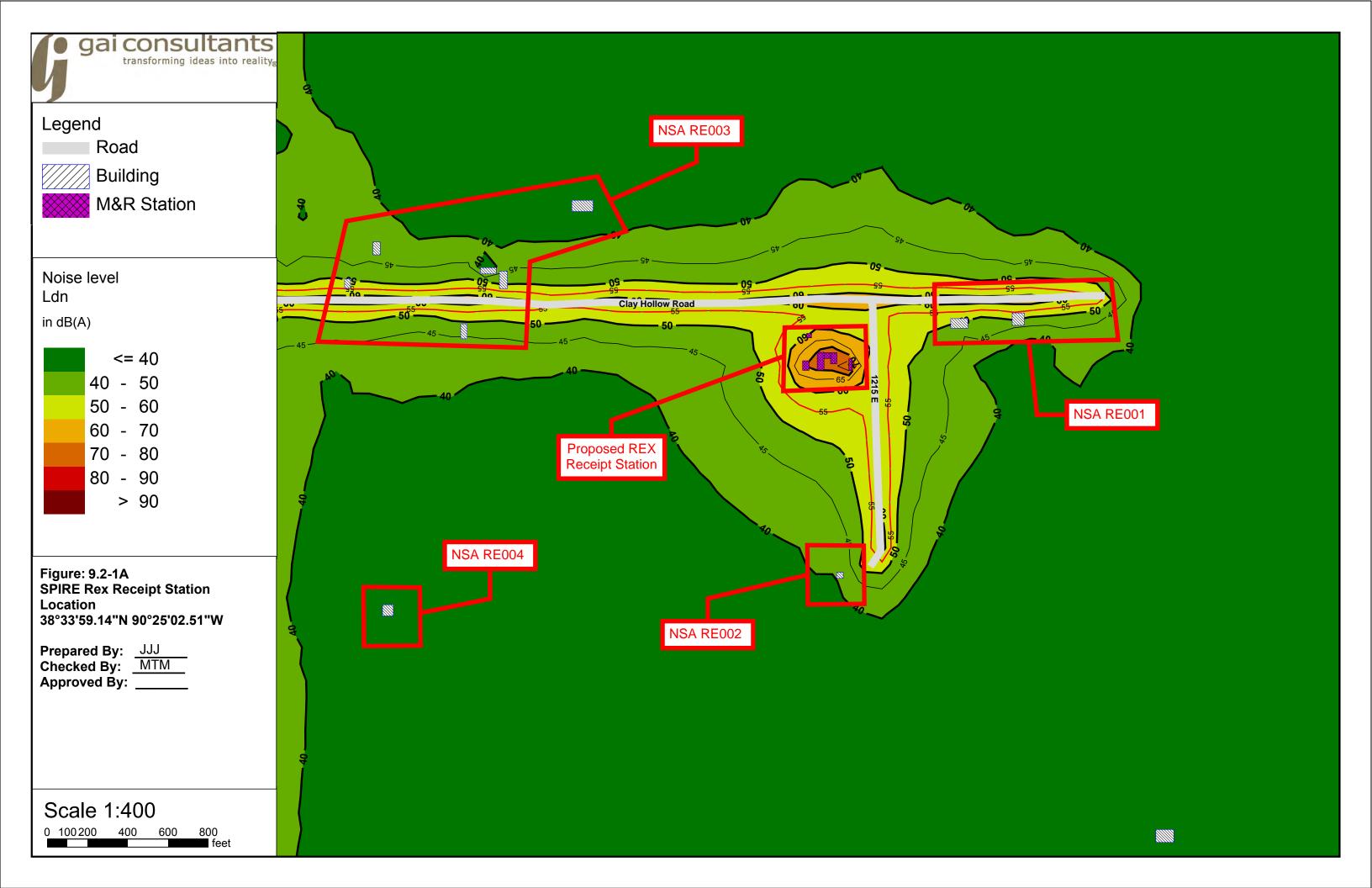
74,100 4.15 28.6 (in Kg/TJ)

2 Assume 100 hour work weeks and 4 weeks per month.

 $<sup>\</sup>label{eq:Notes:Notes:Notes:Notes:Notes:Notes:Notes:Notes:Notes:Notes: Notes:  

# spire 5


APPENDIX 9-B
Illinois Air Regulations


# spire 5

APPENDIX 9-C
Missouri Air Regulations



APPENDIX 9-D
Pre-Construction Noise Survey Data





# Sound Monitoring/Modeling Data Forms

Page 1 of 2

| Project Location: REX M&R                        |                    |         | ect Nu  | mber:    | С      | 160438.00          |          |
|--------------------------------------------------|--------------------|---------|---------|----------|--------|--------------------|----------|
|                                                  | Model Ru           | ın:     |         | C13233   | 6.04   | -001               |          |
| Field Staff:                                     | Do                 | ocum    | ent Ori | gninato  | or: J. | IJ                 |          |
| 111                                              |                    |         |         | Checke   | ed: N  | MTM                |          |
| TL                                               |                    |         | Α       | pprove   | ed: J  | WW                 |          |
|                                                  |                    |         |         |          |        |                    |          |
| Type of Work/Study Performed:   Sound L          | evel Monito        | oring 🔽 | Sound   | Level Mo | odelir | ng                 |          |
| <b>Type of Study:</b> ☑ Ambient ☑ Construction ☐ |                    |         |         |          |        |                    |          |
| <b>Duration:</b> ☐ Spot ☑ 15-minute ☐ 1 hour ☐ 2 |                    |         |         |          |        |                    |          |
| Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmir         | ∩ <b>√</b> LAF90 [ | ☐ LAF   | 10 🔲 L  | ow Frequ | iency  | Other              |          |
| Approximate Study Area (sq mi):                  | 0.79               | )       |         |          |        | ,                  |          |
| Number of Monitoring Locations:                  | 1                  | L       |         |          |        |                    |          |
| Monitoring Location:                             |                    |         |         |          |        |                    |          |
| ID: Location Description:                        |                    |         |         |          | Т      | ype:               |          |
| ML1 In right of way abutting propose             | ed project         | t site. |         |          |        | Handheld and Fixed |          |
| , , ,                                            | . ,                |         |         |          |        |                    | •        |
|                                                  |                    |         |         |          |        |                    | <b>V</b> |
|                                                  |                    |         |         |          |        |                    | •        |
|                                                  |                    |         |         |          |        |                    | •        |
|                                                  |                    |         |         |          |        |                    | •        |
|                                                  |                    |         |         |          |        |                    | -        |
|                                                  |                    |         |         |          |        |                    | •        |
| Description of Surrounding Area (sketch,         | nrominent          | t sou   | rces of | Sound    | etc    | 1                  |          |
| See attached Figure for operation                | nal sound          | mode    | el resu | lts and  | area   | description        |          |
|                                                  |                    |         |         |          |        |                    |          |



#### **Identified Sound Level Sources:** ID: Sound Levels Description: Type: 1 Clay Hollow Rd. Line Measured 2 1215E Line • Measured • 3 See Project Notes below for M&R ▾ Estimated • **Station Sources** 4 106 N/S Line • Estimated • • • •

# **Project Notes:**

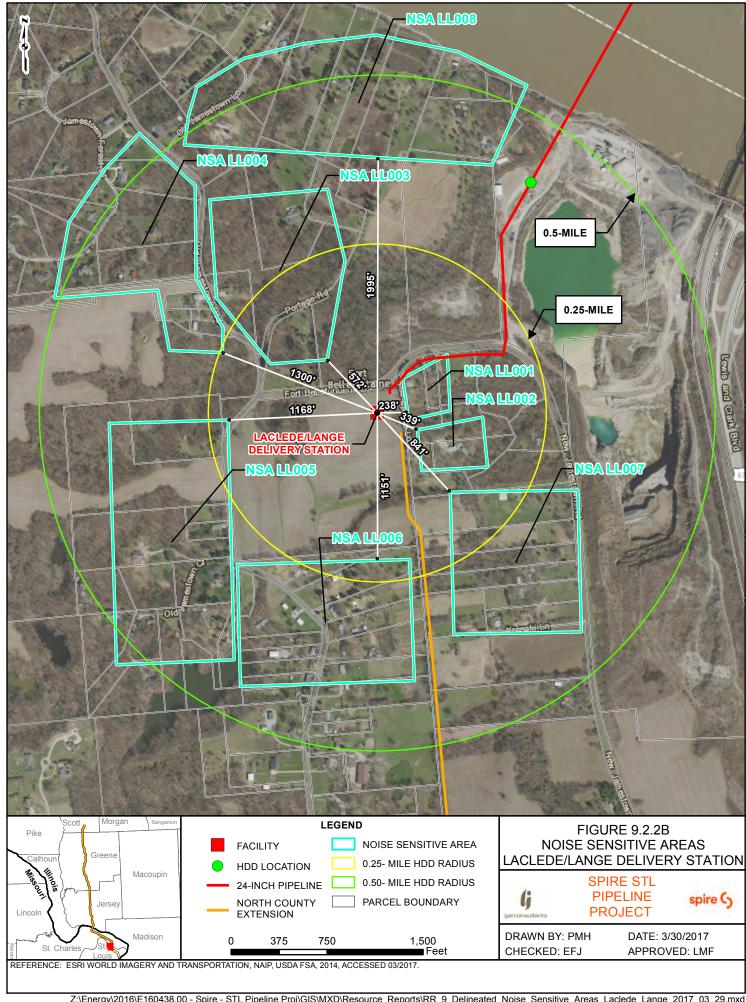
- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Proposed Odorizer Room @ 50.0 dBA
- Proposed O.P.P. Skid @ 86.2 dBA
- Proposed Flow Control Skid @ 86.2 dBA
- Proposed Separation Filter @ 60.0 dBA
- Proposed Condensate Tank @ 50 dBA
- Proposed Pig Launcher/Reciever @ 86.2 dBA
- 2. Sound level contributions from Clay Hollow Rd, 106 N/S, and 1215E. derived from traffic counts taken during 15-minute sound level surveys.

# **Results Summary:**

See attached Figure for sound level map with deliniated NSAs within 1/2 mile. See attached sound monitoring report sheets for results of 15-minute sound level surveys.



EQT Corporation, Haywood Pad Washington County, Pennsylvania REX STATION Site Number: → Description: Done By: Notes: Meter: Atmospheric data Wind Speed (mph) Monitoring Data: | AM Peak | Off-Peak | PM Peak 12 mpH 550 Date /2/6/15 Start Time: 12:46 MAIL Truck drave by Late instudy End Time: 1:45 Duration: Temp. (°F) LAeq: LAFMin: 35.9 dB **Traffic Data** LAFMax: 80.3 dB Humidity (%) Roadway LAFEQ: 53.7 dB Direction 77 LAF90: 38.7 dB Traffic Total Cars Cloud Cover MT HT 99% **Weather Conditions** Site Data: Site Surphase (Alpha): Pavment Type: **Calibration Details:** Plan View: NORTH anc marked (Innacenthed Profile View: OML Road




Attachment.

EQT Corporation, Haywood Pad Washington County, Pennsylvania DEX STATION Site Number: Description: Done By: Notes: Meter: Atmospheric data Wind Speed (mph) Monitoring Data: | AM Peak | Off-Peak | PM Peak Date 12 mp4 58 Start Time: 13:00 End Time: 13:16 Duration: 15. MIN MIN Temp. (°F) MIN LAeq: 38 MT **Traffic Data** Roadway Humidity (%) Direction Traffic Total Cars LAFMin: 35.1 dB MT Cloud Cover LAFMax: 64.0 dB HT LAFEQ: 49.7 dB **Weather Conditions** LAF90: 39.2 dB Site Data: Site Surphase (Alpha): Shielding Factor: Pavment Type: **Calibration Details:** Plan View: NORTH See previous Profile View:



Attachment \_





# Sound Monitoring/Modeling Data Forms

Page 1 of 2

| Desired Levels and Levels (Levels A40 D        | In a track of the co             | 64.60.430.00        |          |
|------------------------------------------------|----------------------------------|---------------------|----------|
| Project Location: Laclede/Lange M&R            | Project Number:                  | C160438.00          |          |
| Client: SPIRE                                  | Model Run: C132336.              |                     |          |
| Field Staff:                                   | Document Origninator             |                     |          |
| 111                                            | Checked                          |                     |          |
| TL                                             | Approved                         | :                   |          |
|                                                |                                  |                     |          |
| Type of Work/Study Performed:   Sound          | Level Monitoring Sound Level Mod | eling               |          |
| Type of Study: ☑ Ambient ☑ Construction ☐      | Post Construction 🕡 Operation    |                     |          |
| <b>Duration:</b> ☐ Spot ☑ 15-minute ☐ 1 hour ☐ |                                  | Other               |          |
| Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmin       | n ☑LAF90 ☐LAF10 ☐Low Frequer     | ncy Other           |          |
| Approximate Study Area (sq mi):                | 0.79                             |                     |          |
| Number of Monitoring Locations:                | 1                                |                     |          |
| Monitoring Location:                           | _                                |                     |          |
| ID: Location Description:                      |                                  | Type:               |          |
| ML1 In right of way abutting propos            | ed project site                  | Handheld and Fixed  |          |
| mile may assetting propos                      | ca project site.                 | Traireite and Tixed | -        |
|                                                |                                  |                     | •        |
|                                                |                                  |                     | -        |
|                                                |                                  |                     | -        |
|                                                |                                  |                     | <b>V</b> |
|                                                |                                  |                     | <b>\</b> |
|                                                |                                  |                     |          |
| Description of Surrounding Area (sketch,       | <u>-</u>                         |                     |          |
| See attached Figure for operatio               | nal sound model results and a    | rea description     |          |
|                                                |                                  |                     |          |

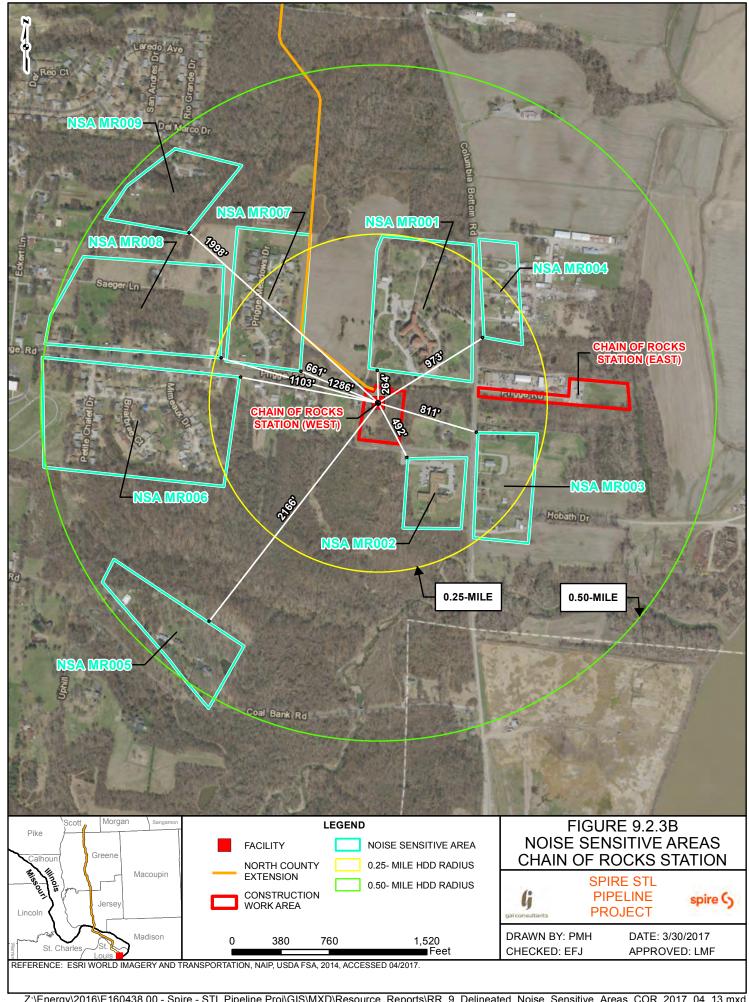


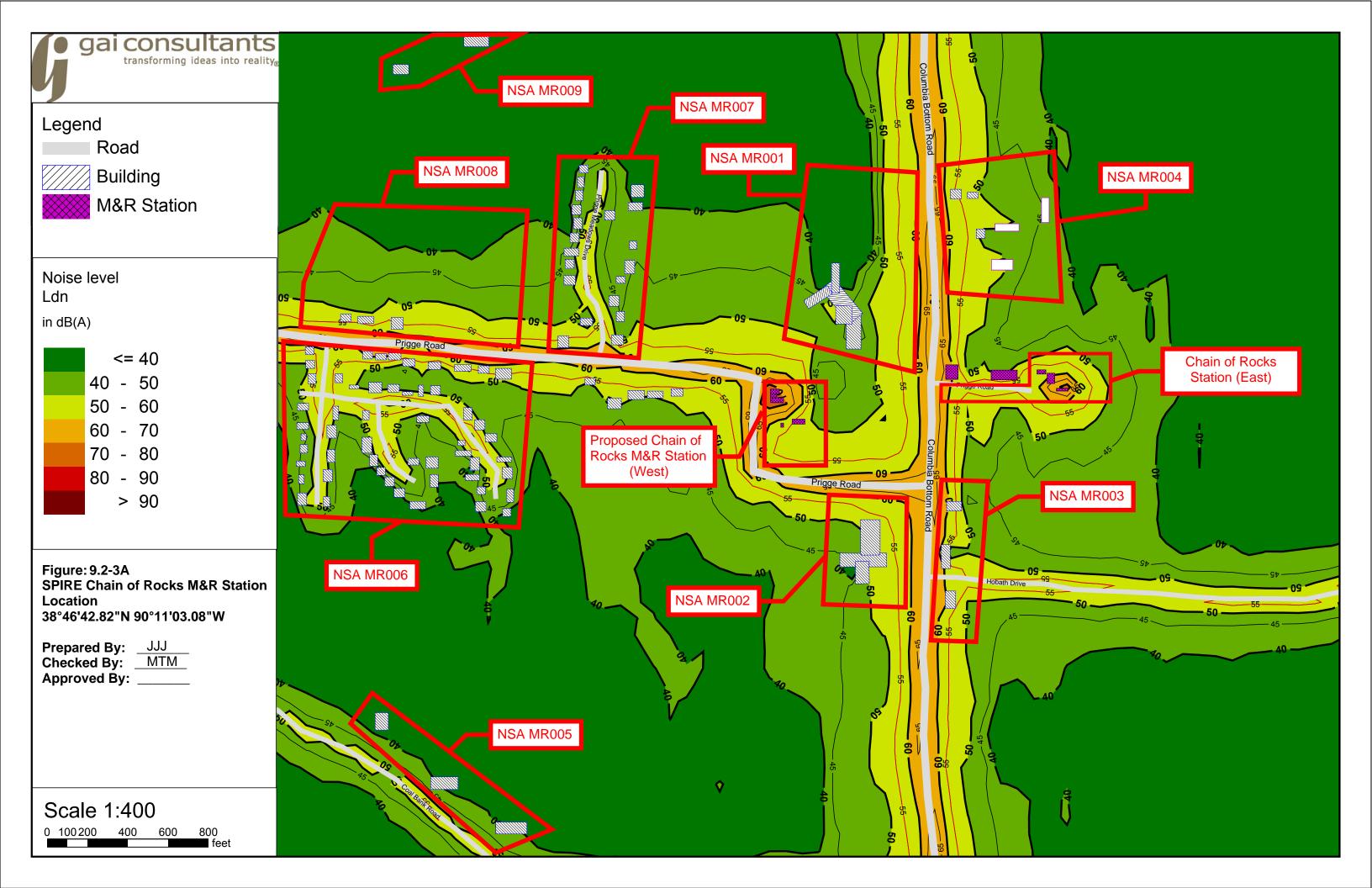
#### Identified Sound Level Sources: ID: Description: Type: Sound Levels 1 Fort Bellfontaine Rd. Line Measured 2 Old Jamestown Rd. Line • Estimated • 3 See Project Notes below for M&R $\blacksquare$ Estimated • **Station Sources** 4 US 67 N/S • Estimated Line • • 5 Jamestown Forest Drive • Line Estimated 6 Central Stone (Quarry Operations) Area • Estimated • •

# **Project Notes:**

- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Two Proposed Indirect Gas Fired Heaters @ 86.2 dBA
- Proposed Pig Reciever @ 86.2 dBA
- Proposed Pig Launcher/Reciever @ 86.2 dBA
- Proposed Separation Filter @ 60.0 dBA
- Proposed O.P.P. Skid @ 86.2 dBA
- Proposed Flow Control Skid @ 86.2 dBA
- Proposed Odorant Tank @ 50 dBA
- 2. Sound level contributions from Fort Bellefontaine Rd. derived from traffic counts taken during 15-minute sound level surveys.
- 3. Sound contributions from Old Jamestown Rd. conservatively estimated based on typical sound levels for similar roads.

# Results Summary:


See attached Figure for sound level map with deliniated NSAs within 1/2 mile. See attached sound monitoring report sheets for results of 15-minute sound level surveys.




| Site Number:            | Description: LAC GOE/L   | ANGE MER         |                 |
|-------------------------|--------------------------|------------------|-----------------|
| Done By:                |                          |                  | Notes:          |
| Meter: -                |                          | Atmospheric data | 1               |
|                         |                          | Wind Speed (mph) | Traffic         |
| <b>Monitoring Data:</b> | AM Peak Off-Peak PM Peak |                  | caes 1          |
| Date                    | 12/6/16                  | 12 mit to East   | mt l            |
| . Start Time:           | 8:07                     |                  | 144.            |
| End Time:               | \$:22                    |                  | LAFMin: 46.7 dB |
| Duration:               | 15 MIN MIN MIN           | Temp. (°F)       | LAFMax: 72.4 dB |
| LAeq:                   |                          |                  | II .            |
| Traffic Data            | 54.5                     | 39               | LAFEQ: 54.5 dB  |
| Roadway                 |                          | Humidity (%)     | LAF90: 49.2 dB  |
| Direction               |                          |                  |                 |
| Traffic Total           | 2                        | 74               |                 |
|                         |                          | 19               |                 |
| Cars                    |                          | Claud Causa      |                 |
| MT                      |                          | Cloud Cover      |                 |
| HT                      |                          | 87%              |                 |
| Weather Conditions      |                          |                  | II .            |
| Plan View:              | Lasladellass             |                  | NORTH           |
| Profile View:           | oud ne                   | j - D            |                 |

| Site Number:              | Description: LACTED      | OLANGE MÉ        | R               |
|---------------------------|--------------------------|------------------|-----------------|
| Done By:                  |                          |                  | Notes:          |
| Meter: ->                 |                          | Atmospheric data |                 |
|                           |                          | Wind Speed (mph) | LAFMin: 34.3 dB |
| Monitoring Data:          | AM Peak Off-Peak PM Peak |                  | LAFMax: 75.3 dB |
| Date                      | 12/6/16                  | 12 WNW           | LAFEQ: 52.7 dB  |
| · Start Time:             | 16:50                    |                  | LAF90: 36.1 dB  |
| End Time:                 | 17:13                    |                  |                 |
| Duration:                 | 15 MIN MIN MIN           | Temp. (°F)       |                 |
| LAeq:                     | 52.7                     | 42               |                 |
| Traffic Data              |                          | 12               |                 |
| Roadway                   |                          | Humidity (%)     | Birds Chirping  |
| Direction                 |                          | 17               | pileos Griping  |
| Traffic Total             |                          | 6 -              |                 |
| Cars                      |                          |                  |                 |
| MT                        |                          | Cloud Cover      |                 |
| HT                        |                          | 100.             | l. I            |
| <b>Weather Conditions</b> |                          | 60/6             | lb.             |
| Calibration Details:      |                          |                  |                 |
| Plan View:                |                          |                  | NORTH           |
|                           |                          |                  |                 |
|                           |                          |                  |                 |
|                           |                          |                  |                 |
|                           | 5el                      | previous         |                 |
| Profile View:             |                          |                  |                 |
|                           |                          |                  |                 |
|                           |                          |                  |                 |







# Sound Monitoring/Modeling Data Forms

Page 1 of 2

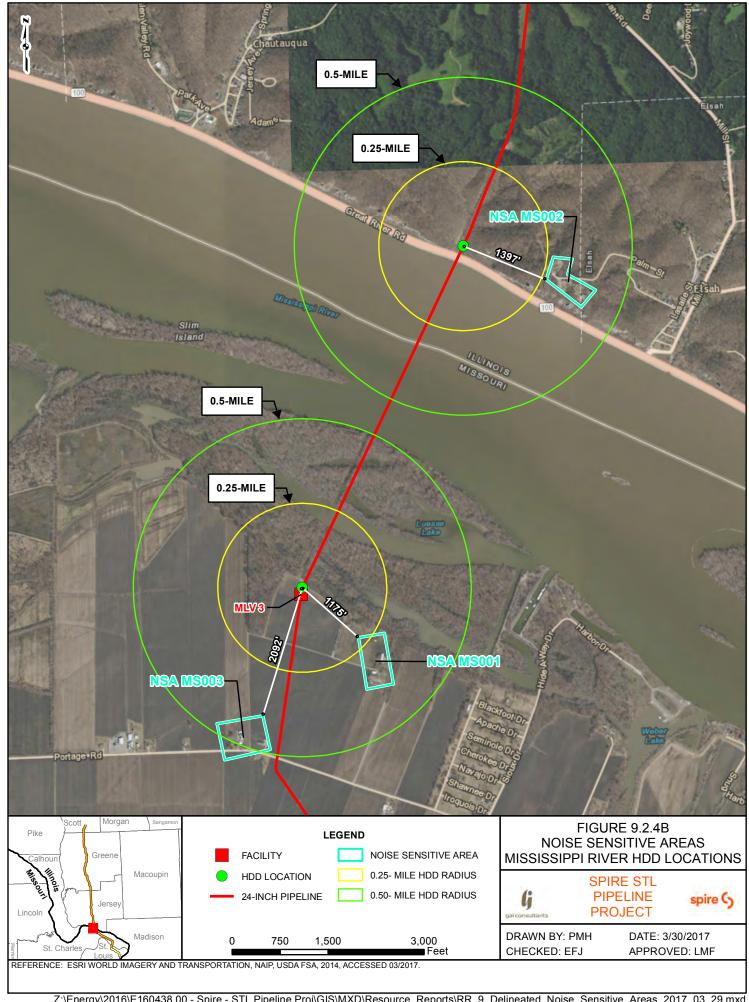
| Project Location: Chain of Rocks Station  |                 | oject Number:                         | C160438.00          |          |
|-------------------------------------------|-----------------|---------------------------------------|---------------------|----------|
| Client: SPIRE                             | Model Run:      | C132336                               |                     |          |
| Field Staff:                              | Docu            | ment Origninato                       | r: JJJ              |          |
| 111                                       |                 | Checked                               | d: MTM              |          |
| TL                                        |                 | Approved                              | d: JWW              |          |
|                                           |                 |                                       |                     |          |
| Type of Work/Study Performed:   Sound     | Level Monitorin | g Sound Level Mod                     | deling              |          |
| Type of Study: ☑ Ambient ☑ Construction ☐ | Post Constructi | on 🕡 Operation                        |                     |          |
| Duration: ☐ Spot ☑ 15-minute ☐ 1 hour ☐   |                 |                                       | Other               |          |
| Data Collected: ☑LAeq ☑LAFmax ☑LAFmin     |                 |                                       | ency Other          |          |
| Approximate Study Area (sq mi):           | 0.79            | · · · · · · · · · · · · · · · · · · · | ·                   |          |
| Number of Monitoring Locations:           | 1               | 1                                     |                     |          |
| Monitoring Location:                      |                 | 1                                     |                     |          |
| ID: Location Description:                 |                 |                                       | Type:               |          |
| ML1 Fenceline of existing installation    | on              |                                       | Handheld and Fixed  |          |
| Teneenie of existing instantation         | 511             |                                       | Traireite and Tixed |          |
|                                           |                 |                                       |                     | •        |
|                                           |                 |                                       |                     | -        |
|                                           |                 |                                       |                     | •        |
|                                           |                 |                                       |                     | <u> </u> |
|                                           |                 |                                       |                     |          |
|                                           |                 |                                       |                     |          |
| Description of Surrounding Area (sketch,  |                 |                                       |                     | _        |
| See attached Figure for operatio          | nal sound mo    | odel results and a                    | rea description     |          |
|                                           |                 |                                       |                     |          |

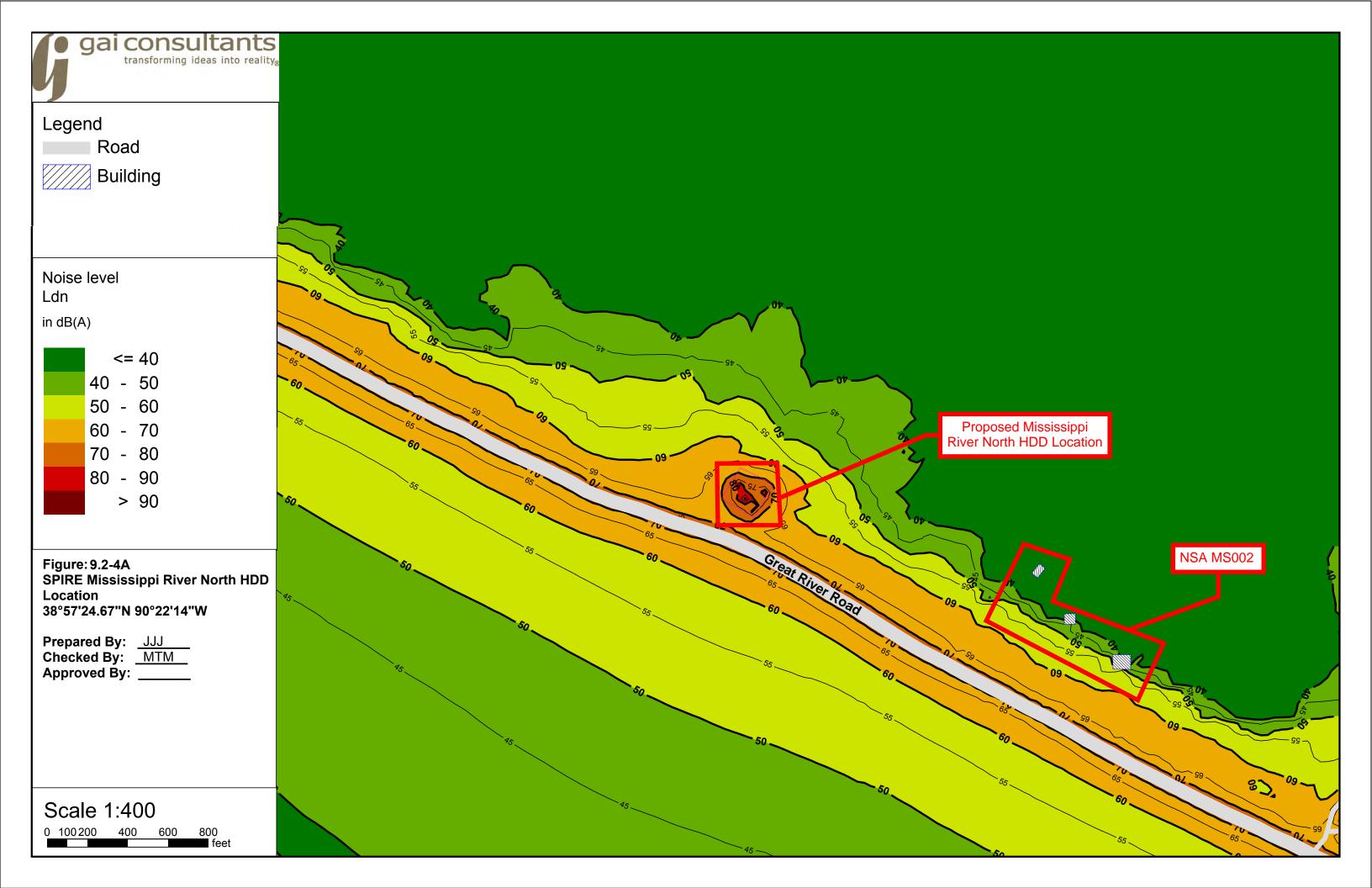


| <b>Identified Sound Level Sources</b> | •       |              |   |
|---------------------------------------|---------|--------------|---|
| ID: Description:                      | Type:   | Sound Levels |   |
| 1 Columbia Bottom Ro                  | ad Line | Estimated    | • |
| 2 Prigge Rd                           | Line    | Measured     |   |
| 3 Hobarth Dr.                         | Line    | Estimated    |   |
| 4 Prigge Meadows Driv                 | /e Line | Estimated    |   |
| 5 Petite Chalet Drive                 | Line    | Estimated    |   |
| 6 Briarbrae Drive                     | Line    | Estimated    |   |
| 7 Briarbrae Ct.                       | Line    | Estimated    |   |
| 8 Mimeaux Dr.                         | Line    | Estimated    |   |
|                                       |         |              |   |

## **Project Notes:**

- 1. Sound levels eminating from light industrial/business use area adjacent to the existing MRT station were interittent and not consistent.
- 2. Sound levels eminating from light industrial/business use area adjacent to NSA BD003 were not measured or quantified.
- 3. M&R Facility expansion conservatively modeled to include the following significant sources:
- Proposed Regulator Skid @ 86.2 dBA
- Proposed Meter Skid @ 86.2 dBA
- Proposed Launcher/Receiver @ 86.2 dBA
- 4. Sound contributions from Columbia Bottom Rd. and Hobath Rd. were conservatively estimated based on typical sound levels for similar roads.
- 5. Sound level contributions for Prigge Road and all side streets determined based on traffic count during 15-minute readings.


## **Results Summary:**




| Site Number:                                    | Description: Chain of Rocks S | tation                            |                                                     |
|-------------------------------------------------|-------------------------------|-----------------------------------|-----------------------------------------------------|
| Done By:  Meter:                                | F                             | Atmospheric data Wind Speed (mph) | Notes:<br>LAFMin: 41.2 dB                           |
| Monitoring Data:  Date Start Time:              | 1-10-111                      | wind Speed (Hiph)                 | LAFMax: 79.0 dB<br>LAFEQ: 61.0 dB<br>LAF90: 44.7 dB |
| End Time:<br>Duration:<br>LAeq:<br>Traffic Data | MIN MIN MIN                   | Temp. (°F)                        | Interactions                                        |
| Roadway<br>Direction<br>Traffic Total           | <b>干干</b>                     | Humidity (%)                      | Bands or 2                                          |
| Cars<br>MT<br>HT<br>Weather Conditions          |                               | Cloud Cover                       |                                                     |
| Plan View:                                      |                               |                                   | NORTH                                               |
|                                                 |                               | ine ni                            | 2                                                   |
|                                                 |                               | Fence                             | - *                                                 |
| Profile View:                                   |                               | INC Fence                         | £                                                   |

| Site Number:         | Description: Chain of Ro | cks Station      |                   |
|----------------------|--------------------------|------------------|-------------------|
| Done By:             | - IV                     |                  | Notes:            |
| Meter:               |                          | Atmospheric data | 1                 |
| Meter.               |                          | Wind Speed (mph) | LAFMin: 44.5 dB   |
| Monitoring Data:     | AM Peak Off-Peak PM Peak |                  | ∥ LAFMax: 62.9 dB |
| Date                 | 12/14/16                 | Oi al a          | LAFEQ: 48.3 dB    |
| Start Time:          | 18:12                    | 4 out W          | LAF90: 46.2 dB    |
| End Time:            | 12,                      |                  |                   |
| Duration:            | 15 MIN MIN MIN           | Temp. (°F)       | 1                 |
| LAeq:                |                          | 42               |                   |
| Traffic Data         |                          | 42               |                   |
| Roadway              |                          | Humidity (%)     | 1                 |
|                      |                          |                  |                   |
| Direction            |                          | 17               |                   |
| Traffic Total        |                          | ( )              |                   |
| Cars<br>MT           |                          | Cloud Cover      |                   |
| HT                   |                          | // Ch            |                   |
| Weather Conditions   |                          | 40               |                   |
| Weather Conditions   |                          |                  | 4                 |
| Calibration Details: |                          |                  |                   |
| Plan View:           |                          |                  | NORTH             |
| Plati view.          |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  | -                 |
|                      |                          | راس              | 1                 |
|                      |                          | oper             |                   |
|                      |                          | 2 previous       |                   |
|                      |                          |                  | 1                 |
|                      |                          |                  | - 1               |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
| Profile View:        |                          |                  | •                 |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  |                   |
|                      |                          |                  |                   |







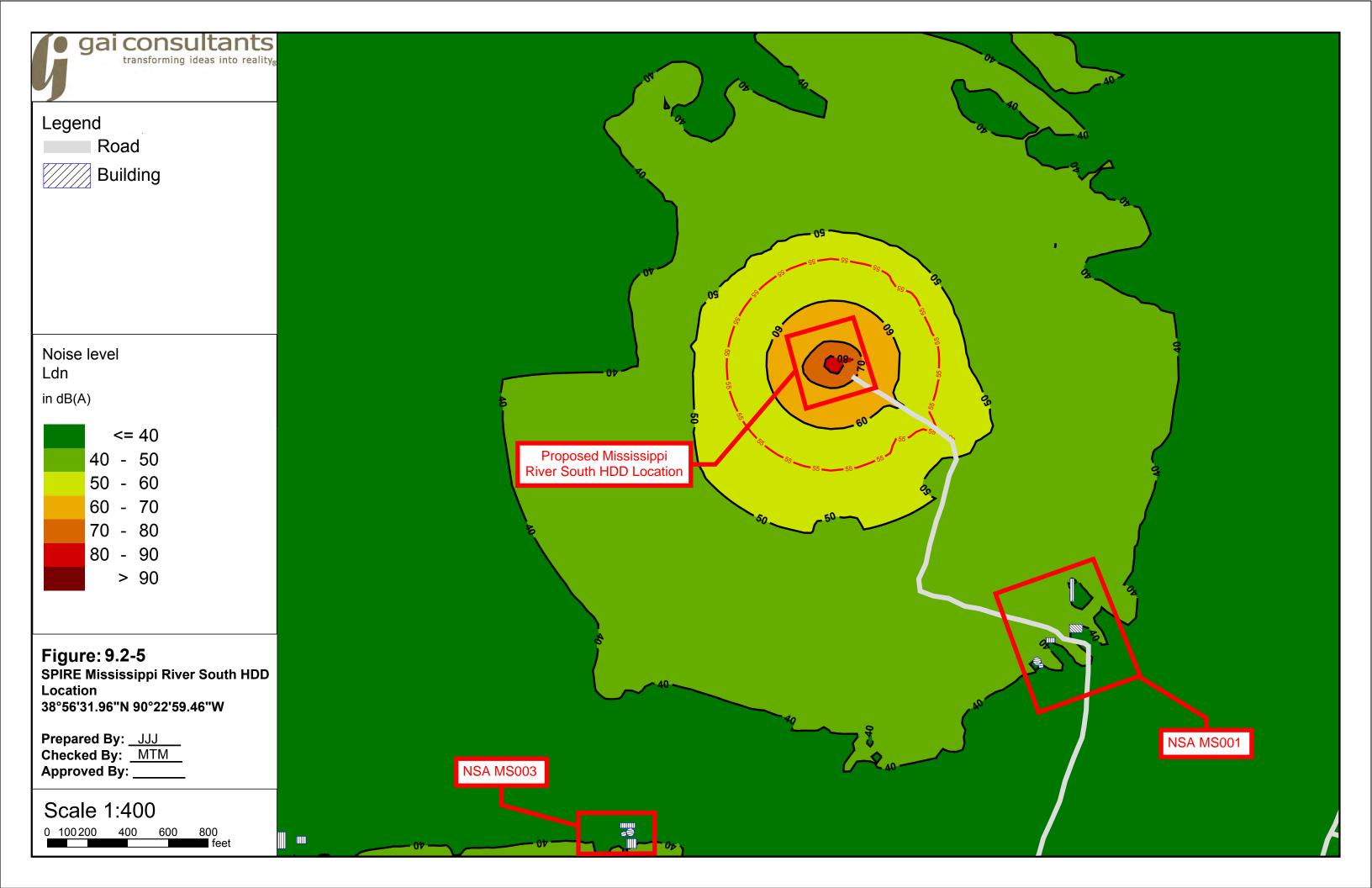
| Project Location: Mississippi River No                                     | rth HDD Project Number:             | C160438.00         |
|----------------------------------------------------------------------------|-------------------------------------|--------------------|
| Client: SPIRE                                                              | Model Run: C132336.0                | 4 -004             |
| Field Staff:                                                               | Document Origninator:               | JJJ                |
| ມມ                                                                         | Checked:                            | MTM                |
| TL                                                                         | Approved:                           | JWW                |
|                                                                            |                                     |                    |
| Type of Work/Study Performed: ☑ Sound L                                    | Level Monitoring 🕡 Sound Level Mode | ling               |
| <b>Type of Study:</b> ☑ Ambient ☑ Construction ☐                           |                                     |                    |
| <b>Duration:</b> ☐ Spot ☑ 15-minute ☐ 1 hour ☐ 2                           |                                     |                    |
| Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmir                                   | n ☑ LAF90 ☐ LAF10 ☐ Low Frequence   | cy Other           |
| Approximate Study Area (sq mi):                                            | 0.79                                |                    |
| Number of Monitoring Locations:                                            | 1                                   |                    |
| Monitoring Location:                                                       |                                     |                    |
| ID: Location Description:                                                  |                                     | Туре:              |
| ML1 In right of way near River Road                                        | (site access denied)                | Handheld and Fixed |
|                                                                            |                                     |                    |
|                                                                            |                                     |                    |
|                                                                            |                                     |                    |
|                                                                            |                                     | [▼                 |
|                                                                            |                                     |                    |
|                                                                            |                                     |                    |
|                                                                            |                                     |                    |
| Description of Surrounding Area (sketch,  See attached Figure for operatio | nal sound model results and are     |                    |
|                                                                            |                                     |                    |



#### **Identified Sound Level Sources:** ID: Description: Sound Levels Type: 1 Great River Road Line Estimated • Estimated • 2 See Project Notes below for HDD Station $\blacksquare$ Sources • 3 Mill Street Line • Estimated 4 Elm Street • Line Estimated • •

## **Project Notes:**

- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Large Drill Rig @ 110 dBA
- Two Mud Pumps @ 110 dBA
- Three Generators @ 90 dBA
- Separation Plant @ 100 dBA
- 2. Sound level contributions from Mill Street and Elm Street conservatively estimated based on typical sound levels for similar roads.
- 3. Sound contributions Great River Road based on traffic counts and ambient sound level study results.


## **Results Summary:**



| Site Number:       | Description: MGS1351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PP. RIVER NOT    | TH HOD            |     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-----|
| Done By:           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17               | Notes:            |     |
| Meter:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atmospheric data |                   |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wind Speed (mph) | TRAFFIC           |     |
| Monitoring Data:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LY FromWNW       | CARS LHIUNGARS WI | 111 |
| Date               | 12/6/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14 (40 )         | mT 111 wor 11     |     |
| Start Time:        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                | HT HT 11          |     |
| End Time:          | 11:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 10-)           |                   |     |
| Duration:          | 15" MIN MIN MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp. (°F)       | LAFMin: 32.3 dB   |     |
| LAeq:              | \$8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41               | LAFMax: 78.8 dB   |     |
| Traffic Data       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | LAFEQ: 58.3 dB    |     |
| Roadway            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Humidity (%)     | LAF90: 36.1 dB    |     |
| Direction          | EMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70               |                   |     |
| Traffic Total      | 14/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/5              |                   |     |
| Cars               | 11 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                   |     |
| MT                 | 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cloud Cover      |                   |     |
| HT                 | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100%             |                   | 1   |
| Weather Conditions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-10            |                   |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |     |
| Plan View:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | NORTH             | 一   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <b>A</b>          |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1                 |     |
|                    | (mod)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                   |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4.1             | ,                 |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2052 100         |                   |     |
|                    | c rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LUCIO            |                   |     |
| _                  | J Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00               |                   |     |
|                    | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                |                   | - 1 |
| 111                | M . I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                   |     |
|                    | The same of the sa | L W              |                   |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                |                   |     |
|                    | Kilen of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1              | - 1               | - 1 |
|                    | Riven Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11               | 1                 |     |
| Profile View:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1              |                   | -   |
| TOTAL VICAV.       | Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AC)              |                   |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                | ×                 |     |
|                    | h _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Noa              | 1                 |     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00             | . ~               |     |

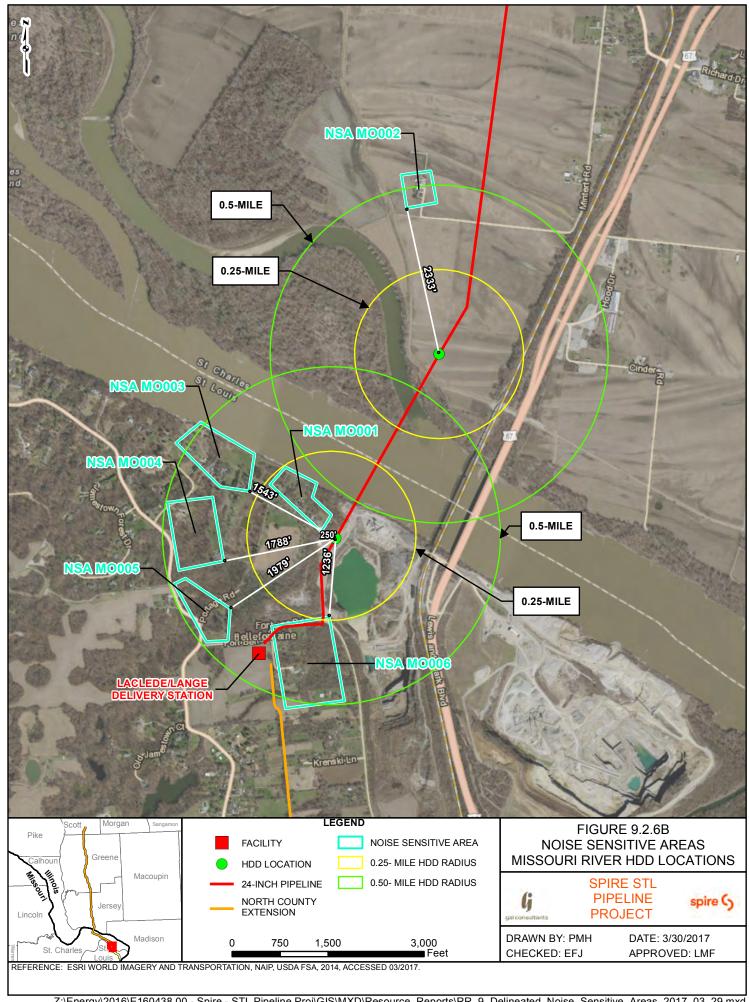


| Done By:  Meter:  Monitoring Data:  Monitoring Data:  Monitoring Data:  Start Time:  Lace:  End Time:  LAce:  LAce:  Monitorine:  LAce:  End Time:  LAce:  LAce:  Monitorine:  LAce:  LAce:  LAce:  Monitorine:  Lace:  LAce:  LAce:  Monitorine:   Site Number:              | Description: MSSIS        | sippi North         | n HDD              |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------|--------------------|-----|
| Monitoring Data:    Man   Peak   Off-Peak   PM Peak   Mind Speed   IZ   6   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Done By:                  | 1.                        |                     |                    |     |
| Monitoring Data: AM Peak Off-Peak Date 12 lb lb Start Time: 14-72 End Time: 14-73 Duration: Smin Min Laeq: Cars Will Laeq: Cars lb lo Mark 12-12 Lb lb Start Time: Laeq: Cars lb lo Mark 12-12 Lb lb Mark 14-13 Lb Mark 14-14 14 Lb Mark 14-14 L |                           |                           | Atmospheric data    | 1                  |     |
| Traffic Data  Roadway Direction Traffic Total 24 23 Cars 16 10 HT 2 1 Weather Conditions  Site Data: Site Surphase (Alpha): Calibration Details:  Shielding Factor: Payment Type: Calibration Details:  Plan View:  NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wictori                   |                           | Wind Speed (mph)    |                    | - 1 |
| Traffic Data  Roadway Direction Traffic Total 24 23 Cars 16 10 HT 2 1 Weather Conditions  Site Data: Site Surphase (Alpha): Calibration Details:  Shielding Factor: Payment Type: Calibration Details:  Plan View:  NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                         |                           | 13 WNW              | X E W              | d   |
| Traffic Data  Roadway Direction Traffic Total 24 23 Cars 16 10 HT 2 1 Weather Conditions  Site Data: Site Surphase (Alpha): Calibration Details:  Plan View:  See Parman  LAeq: 61.5 dB LAF90: 36.4 dB  WAT WITH WITH HITH WAT WITH HITH WAT WAT WITH HITH WAT WAT WITH HITH WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                           |                     | I a way I way      |     |
| Traffic Data  Roadway Direction Traffic Total 24 23 Cars 16 10 HT 2 1 Weather Conditions  Site Data: Site Surphase (Alpha): Calibration Details:  Plan View:  See Parman  LAeq: 61.5 dB LAF90: 36.4 dB  WAT WITH WITH HITH WAT WITH HITH WAT WAT WITH HITH WAT WAT WITH HITH WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                           |                     | Cars Milli         |     |
| Traffic Data  Roadway Direction Traffic Total 24 23 Cars 16 10 HT 2 1 Weather Conditions  Site Data: Site Surphase (Alpha): Calibration Details:  Plan View:  See Parman  LAeq: 61.5 dB LAF90: 36.4 dB  WAT WITH WITH HITH WAT WITH HITH WAT WAT WITH HITH WAT WAT WITH HITH WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                           | Temp. (°F)          | 11 111             |     |
| Traffic Data  Roadway Direction Traffic Total 24 23 Cars 10 10 HT 2 1 Weather Conditions  Site Data: Site Surphase (Alpha): Shielding Factor: Payment Type: Calibration Details:  Plan View:  NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           |                     | 1 6                |     |
| Roadway Direction E W Traffic Total 24 23 Cars 10 10 MT 12 17 MT 2 1 Weather Conditions Site Data: Site Surphase (Alpha): Calibration Details:  Plan View:  Humidity (%) UNI LAFMin: 31.8 dB LAFMax: 81.6 dB LAFEQ: 61.5 dB LAF90: 36.4 dB  NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | (a.s)                     | 41                  | LAT USE IN LATE HE | 1   |
| Direction & W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | α.                        | Humidity (9/)       | 1 1000 1000        | ·   |
| Traffic Total 24 23 Cars 10 10 Sloud Cover HT 2 1 Shielding Factor: Payment Type: Calibration Details:  Plan View:  Traffic Total 24 23 Cars 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                           | Humaly (%)          |                    |     |
| Cars 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Direction                 | 6 W                       | , 0                 | 11 11              |     |
| Cars   C   C   C   Cloud Cover   C   Cloud Cover | Traffic Total             | 24 23                     | 1 68                | 11 40 11 11        |     |
| Weather Conditions  Weather Conditions  Site Data: Site Surphase (Alpha): Shielding Factor: Payment Type: Calibration Details:  Plan View:  NORTH  See Payment Type: Shielding Factor: Payment Type: P | Cars                      | 10 10                     |                     | 1                  |     |
| Weather Conditions 9670 LAFMax: 81.6 dB LAFEQ: 61.5 dB LAF90: 36.4 dB LAF90       | MT                        | 1212                      | Cloud Cover         | AFMin: 31 & AR     |     |
| Site Data: Site Surphase (Alpha): Shielding Factor: Payment Type: LAFEQ: 61.5 dB LAF90: 36.4 dB  Plan View: NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                           | 910                 | II/                |     |
| Site Data: Site Surphase (Alpha): Shielding Factor: Payment Type: LAFEQ: 61.5 dB LAF90: 36.4 dB  Plan View: NORTH  See Payment Type: LAFEQ: 61.5 dB LAF90: 36.4 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Weather Conditions</b> |                           | 10/0                | II .               |     |
| Plan View:    See Previsor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                           |                     | •                  |     |
| Plan View:  NORTH  See Previous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Data: Site Surpha    | ase (Alpha): Shielding Fa | ctor: Pavment Type: | LAF90: 36.4 dB     |     |
| See Phenison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calibration Details:      |                           |                     |                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plan View:                |                           |                     | NORTH              | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 50                        | el previous         |                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Profile View:             |                           |                     |                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                           |                     |                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                           |                     |                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177                       |                           |                     |                    |     |



|                                                |              | _     |        |       |        |       |                    |      |
|------------------------------------------------|--------------|-------|--------|-------|--------|-------|--------------------|------|
| <b>Project Location:</b> Mississippi River Sou |              | _     | ojec   |       |        |       | C160438.00         |      |
| Client: SPIRE                                  | Model Ru     | ın:   |        | (     | C132   | 336.0 | 4 -001             |      |
| Field Staff:                                   | Do           | ocu   | men    | t Ori | gnina  | ator: | 111                |      |
| JJJ                                            |              |       |        |       | Chec   | ked:  | MTM                |      |
| TL                                             |              |       |        | Α     | ppro   | ved:  | JWW                |      |
|                                                |              |       |        |       |        |       |                    |      |
| Type of Work/Study Performed: ☑ Sound          | Level Monito | oring | g 🔽 So | ound  | Level  | Mode  | eling              |      |
| Type of Study: ☑ Ambient ☑ Construction ☐      | Post Constru | ucti  | on 🕡   | Oper  | ation  |       | 1                  |      |
| Duration: ☐ Spot ☑ 15-minute ☐ 1 hour ☐        |              |       |        |       |        |       | ther               |      |
| Data Collected: VLAeq VLAFmax VLAFmi           |              |       |        |       |        |       | cy  Other          |      |
| Approximate Study Area (sq mi):                | 0.79         |       |        |       |        | •     | <u>, —</u>         |      |
| Number of Monitoring Locations:                | 1            |       |        | -     |        |       |                    |      |
| Monitoring Location:                           |              | _     |        |       |        |       | 1                  |      |
| ID: Location Description:                      |              |       |        |       |        |       | Typo:              |      |
| ·                                              |              |       |        |       |        |       | Type:              | . [_ |
| ML1 At roadway property gate of pr             | oposed HL    | טט    | site   |       |        |       | Handheld and Fixed | 1 _  |
|                                                |              |       |        |       |        |       |                    | Ť    |
|                                                |              |       |        |       |        |       |                    | _    |
|                                                |              |       |        |       |        |       |                    | _    |
|                                                |              |       |        |       |        |       |                    |      |
|                                                |              |       |        |       |        |       |                    |      |
|                                                |              |       |        |       |        |       |                    |      |
| Description of Surrounding Area (sketch,       |              |       |        |       |        |       |                    |      |
| See attached Figure for operatio               | nal sound    | me    | odel   | resu  | lts ar | nd ar | ea description     |      |
|                                                |              |       |        |       |        |       |                    |      |




| Identi                              | fied Sound Level Sources:                                                                                                             |             |              |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| ID:                                 | Description:                                                                                                                          | Type:       | Sound Levels |
|                                     | 1 Portage Rd                                                                                                                          | Line        | Estimated ▼  |
|                                     | <sup>2</sup> See Project Notes below for HDD Station                                                                                  |             | Estimated    |
|                                     | Sources                                                                                                                               |             |              |
|                                     |                                                                                                                                       |             |              |
|                                     |                                                                                                                                       |             |              |
|                                     |                                                                                                                                       |             |              |
|                                     |                                                                                                                                       |             |              |
|                                     |                                                                                                                                       |             | [5           |
|                                     |                                                                                                                                       |             | [5           |
| Projec                              | t Notes:                                                                                                                              |             |              |
| • Two<br>• Thre<br>• Sepa<br>2. Sou | e Drill Rig @ 110 dBA Mud Pumps @ 110 dBA e Generators @ 90 dBA tration Plant @ 100 dBA nd level contributions from nearby Portage Ri | d Estimated |              |
| See at                              | tached Figure for sound level map w<br>tached sound monitoring report sheets for re                                                   |             |              |




| Site Number        | Description: 163135 | INPS PINER Sout  | h HOD           |
|--------------------|---------------------|------------------|-----------------|
| Done By:           |                     | 1.0              | Notes:          |
| Meter:             |                     | Atmospheric data |                 |
|                    |                     | Wind Speed (mph) | LAFMin: 33.9 dB |
| Monitoring Data:   |                     |                  | LAFMax: 59.2 dB |
| Date               | 12/6/16             | 10 MpH From NW   | LAFEQ: 40.0 dB  |
| Start Time:        | 10 09               |                  | LAF90: 46.9 dB  |
| End Time:          | 10:24               |                  |                 |
| Duration:          | 15 MIN MIN MIN      | Temp. (°F)       |                 |
| LAeq:              | 40.0                | 41               |                 |
| Traffic Data       |                     |                  |                 |
| Roadway            |                     | Humidity (%)     |                 |
| Direction          |                     | 7507             |                 |
| Traffic Total      |                     | 75%              |                 |
| Cars               |                     |                  |                 |
| MT                 |                     | Cloud Cover      |                 |
| НТ                 |                     | 160 %            |                 |
| Weather Conditions |                     |                  |                 |
|                    |                     |                  |                 |
| Plan View:         |                     |                  | NORTH           |
|                    | 4                   |                  |                 |
|                    | 1                   |                  |                 |
|                    | Planner             |                  |                 |
|                    | MON                 | Ü                | 00              |
|                    | Con                 |                  | priseige.pp     |
|                    | U                   | 1                | (Liver          |
|                    |                     | 1                |                 |
|                    |                     | Time             |                 |
|                    | 77                  | Tombe            | U.S             |
|                    | 117                 | LOKUL            |                 |
| -                  |                     |                  |                 |
|                    |                     |                  |                 |
|                    |                     | /                |                 |
| Profile View:      |                     |                  |                 |
|                    | Th                  |                  | 1               |
|                    | •                   | Drieway          |                 |
|                    | A                   |                  |                 |
|                    |                     | A.               |                 |

| Site Number:                                 | Description: Mississi     | IPPU KIVER          | South           |
|----------------------------------------------|---------------------------|---------------------|-----------------|
| Done By:                                     |                           |                     | Notes:          |
| Meter:                                       |                           | Atmospheric data    | 1               |
|                                              |                           | Wind Speed (mph)    | LAFMin: 32.6 dB |
| <b>Monitoring Data:</b>                      | AM Peak Off-Peak PM Peak  |                     | LAFMax: 67.7 dB |
| Date                                         | 12/6/16                   | 9mph ESE            | LAFEQ: 46.5 dB  |
| Start Time:                                  |                           | (,,)                | LAF90: 37.2 dB  |
| End Time:                                    |                           |                     |                 |
| Duration:                                    | 15 MIN MIN MIN            | <u>Temp. (°F)</u>   |                 |
| LAeq:                                        | 46.5                      | 42                  |                 |
| Traffic Data                                 |                           |                     |                 |
| Roadway                                      |                           | Humidity (%)        |                 |
| Direction                                    |                           | ~1                  |                 |
| Traffic Total                                |                           | 8 /                 |                 |
| Cars                                         |                           |                     |                 |
| MT                                           |                           | Cloud Cover         |                 |
| НТ                                           |                           | 1007                |                 |
| Weather Conditions                           |                           | 100/6               | ]               |
| Site Data: Site Surpha  Calibration Details: | ise (Alpha): Shielding Fa | ctor: Pavment Type: |                 |
| Plan View:                                   |                           |                     | NORTH           |
|                                              |                           |                     |                 |
|                                              |                           |                     |                 |
|                                              |                           |                     |                 |
|                                              |                           |                     |                 |
|                                              |                           | See previ           | کاره            |
| Profile View:                                |                           |                     |                 |
|                                              |                           |                     |                 |
|                                              |                           |                     |                 |
|                                              |                           |                     |                 |
| 1                                            |                           |                     |                 |







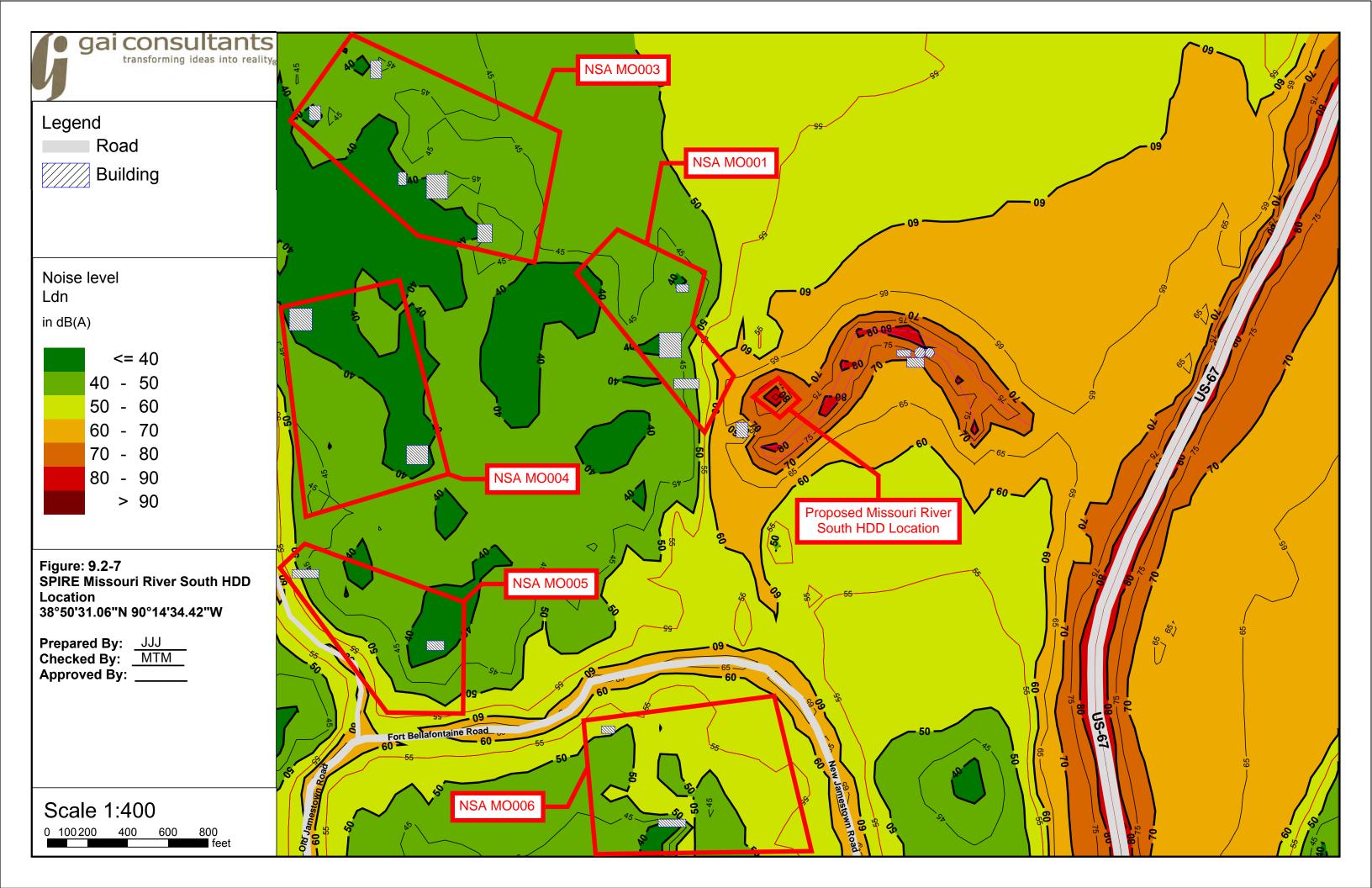
|                                                  |               |                     |       | 04.60.400.00       |          |
|--------------------------------------------------|---------------|---------------------|-------|--------------------|----------|
| Project Location: Missouri River North           |               | Project Number      |       | C160438.00         |          |
| Client: SPIRE                                    | Model Run     |                     |       | 4 -006             |          |
| Field Staff:                                     | Doo           | cument Orignina     |       |                    |          |
| າກ                                               |               |                     |       | MTM                |          |
| TL                                               |               | Appro               | ved:  | JWW                |          |
|                                                  |               |                     |       |                    |          |
| Type of Work/Study Performed: ☑ Sound I          | Level Monitor | ing ☑ Sound Level I | Mode  | ling               |          |
| <b>Type of Study:</b> ☑ Ambient ☑ Construction ☐ |               |                     |       |                    |          |
| <b>Duration:</b> ☐ Spot ☑ 15-minute ☐ 1 hour ☐ 2 |               |                     |       |                    |          |
| Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmir         | n ☑LAF90 [    | ]LAF10   Low Fre    | quen  | cy Other           |          |
| Approximate Study Area (sq mi):                  | 0.79          | ,                   |       |                    |          |
| Number of Monitoring Locations:                  | 1             |                     |       |                    |          |
| Monitoring Location:                             |               | 1                   |       |                    |          |
| ID: Location Description:                        |               |                     |       | Type:              |          |
| ML1 At roadway north of proposed                 | HDD bore lo   | ocation and near    | r     | Handheld and Fixed | <b>\</b> |
| closest NSA                                      |               |                     |       |                    | -        |
| 6.6565t 1 <b>.6</b> 7 t                          |               |                     |       |                    | _        |
|                                                  |               |                     |       |                    | -        |
|                                                  |               |                     |       |                    | •        |
|                                                  |               |                     |       |                    | -        |
|                                                  |               |                     |       |                    | -        |
|                                                  |               |                     |       |                    | \        |
| Description of Surrounding Area (sketch,         | nrominont     | sources of sour     | 4 04  |                    |          |
| See attached Figure for operatio                 | nal sound r   | nodel results an    | id ar | ea description     |          |
|                                                  |               |                     |       |                    |          |



#### **Identified Sound Level Sources:** ID: Sound Levels Description: Type: 1 Minert Rd. Line Estimated 2 US Rt 67 Line • Estimated • 3 See Project Notes below for HDD Station $\blacksquare$ Estimated • Sources 4 Red School Road Line • Estimated • • 5 Hood Drive • Line Estimated 6 Cinder Road Line • Estimated •

## **Project Notes:**

- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Large Drill Rig @ 110 dBA
- Two Mud Pumps @ 110 dBA
- Three Generators @ 90 dBA
- Separation Plant @ 100 dBA
- 2. Sound level contributions from nearby US Rt 67 Estimated
- 3. Sound level contribution from Minert Rd, Red School Road, Hood Drive, and Cinder Road estimated based on traffic count performed during 15-minute sound level readings.


## **Results Summary:**



| Site Number:              | Description: N. 15500.   | 21 North t                   | to D          |        |
|---------------------------|--------------------------|------------------------------|---------------|--------|
| Done By:                  |                          |                              | Notes:        |        |
| Meter:                    |                          | Atmospheric data             |               |        |
|                           |                          | Wind Speed (mph)             | — LAFMin: 37. |        |
| <b>Monitoring Data:</b>   | AM Peak Off-Peak PM Peak |                              | ∥ LAFMax: 56  | 5.9 dB |
| Date                      |                          |                              | LAFEQ: 43.    | 7 dB   |
| · Start Time:             |                          | 14 From NNW                  | LAF90: 40.0   |        |
| End Time:                 | 9:42                     |                              | LAI 50. 40.0  | , db   |
| Duration:                 | 15 MIN MIN MIN           | Temp. (°F)                   |               |        |
|                           |                          | <u>1011p. (11</u>            |               |        |
| LAeq:<br>Traffic Data     | 43,7                     | 40                           |               |        |
|                           |                          |                              |               |        |
| Roadway                   |                          | Humidity (%)                 |               |        |
| Direction                 |                          | 72                           |               |        |
| Traffic Total             |                          | 72                           |               |        |
| Cars                      |                          |                              |               | 1      |
| MT                        |                          | Cloud Cover                  |               | , a    |
| HT                        |                          | 0.05                         |               | +      |
| <b>Weather Conditions</b> |                          | 90%                          |               | /      |
|                           |                          |                              |               |        |
| Plan View:                | TT v                     | 1                            |               | NORTH  |
|                           | 1                        | 101                          | 1             | NORTH  |
|                           | Mir                      | unt of                       | 1 ///         |        |
|                           | ¥                        |                              | + 111         |        |
|                           |                          | × .                          | t ///         |        |
| × .                       |                          | John)                        |               | 10     |
|                           |                          | cession                      | 1 / /         |        |
|                           | \                        | Funnacessible) Plannad Louis | 11/2/         |        |
|                           | \                        | Olymna I                     | /////_        |        |
| \                         |                          | 1/400                        |               |        |
|                           |                          | le Lous F                    | WILL          |        |
|                           |                          | t                            | 1011          |        |
|                           | 3                        | F                            |               | 4      |
|                           |                          | 1                            |               |        |
|                           |                          | - F                          |               |        |
| Profile View:             |                          | -                            |               |        |
|                           |                          |                              |               |        |
|                           |                          |                              | 20al          |        |
|                           |                          |                              | 2000          |        |
|                           |                          |                              |               |        |

| Site Number: 🎍                              | Description: M(550 | our KIVER NOT     | TH 1777         |
|---------------------------------------------|--------------------|-------------------|-----------------|
| Done By:                                    |                    |                   | Notes:          |
| Meter:                                      |                    | Atmospheric data  |                 |
|                                             |                    | Wind Speed (mph)  | LAFMin: 34.4 dB |
| Monitoring Data:                            |                    |                   | LAFMax: 80.0 dB |
| Date                                        | 12/6/16            | 14 mpc WNW        | LAFEQ: 58.9 dB  |
| Start Time:                                 |                    |                   | LAF90: 38.5 dB  |
| End Time:                                   | 6.18               | <u>Temp. (°F)</u> |                 |
| Duration:                                   | S MIN MIN MIN      |                   |                 |
| LAeq:                                       | 589                | 4(                |                 |
| Traffic Data                                |                    | Humidity (%)      |                 |
| Roadway                                     |                    | italinary (70)    |                 |
| Direction                                   |                    | 79                |                 |
| Traffic Total                               | -                  |                   |                 |
| Cars<br>MT                                  |                    | Cloud Cover       |                 |
| HT                                          |                    | 157               |                 |
| Weather Conditions                          |                    | 35%               |                 |
|                                             |                    |                   |                 |
| Site Data: Site Surph: Calibration Details: |                    |                   |                 |
| lat. ve                                     |                    |                   | NORTH           |
| Plan View:                                  |                    |                   | NOKIH           |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   | -               |
|                                             |                    |                   |                 |
|                                             |                    | . NUS             |                 |
|                                             |                    | e previous        |                 |
|                                             | 6                  | e l'              |                 |
|                                             | 7                  |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |
| Profile View:                               |                    |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |
|                                             |                    |                   |                 |





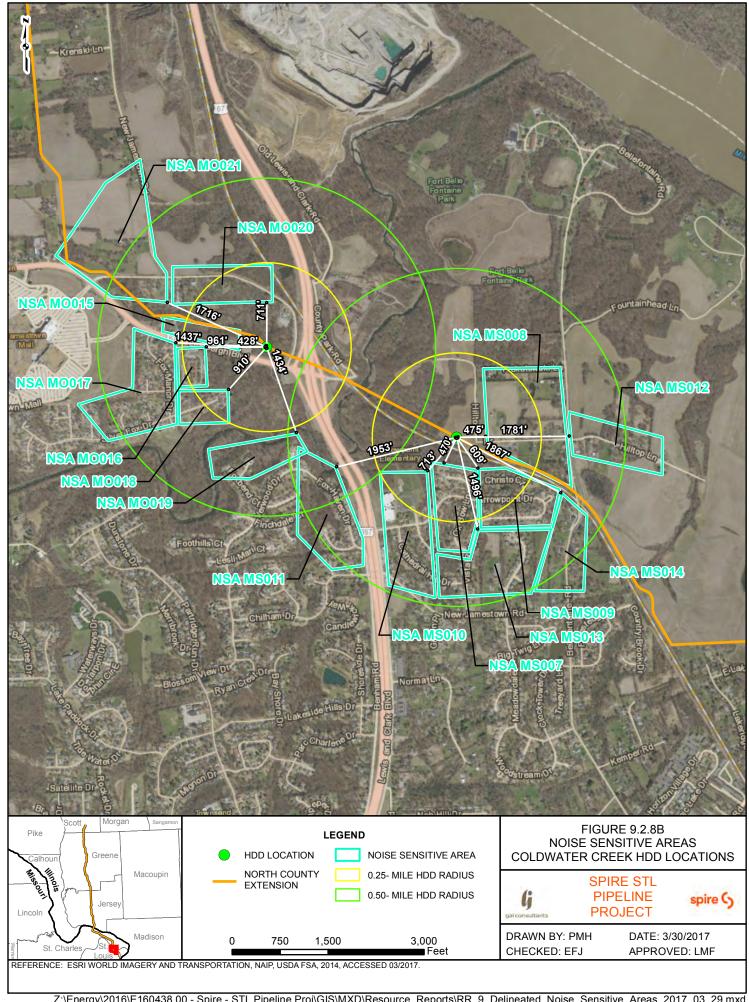
| Client: SPIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Location: Missouri River South   | HDD Project Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C160438.00         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Field Staff:  JJJ Checked: MTM Approved: JWW  Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling Type of Study: Ambient Construction Post Construction Operation  Duration: Spot J15-minute 1 hour 48 hour 72 hour Other  Data Collected: LAeq LAFmax LAFmin LAF90 LAF10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location  ID: Location Description: Type:  ML1 At proposed HDD location  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot 15-minute 1 hour 24 hour 48 hour 72 hour Other  Data Collected: LAeq LAFmax LAFmin LAF90 LAF10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location:  ID: Location Description: Type:  ML1 At proposed HDD location  Type:  Handheld and Fixed                                                                                                                                                                     |                                          | Document Origninator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JJJ                |
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot 15-minute 1 hour 24 hour 48 hour 72 hour Other  Data Collected: Laeq Lafmax Lafmin Laf90 Laf10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location:  ID: Location Description: Type:  ML1 At proposed HDD location  Handheld and Fixed   W  W  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                         | ມມ                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot Is-minute hour 24 hour 48 hour 72 hour Other  Data Collected: Laeq Lafmax Lafmin Laf90 Laf10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location:  ID: Location Description: Type:  ML1 At proposed HDD location  Handheld and Fixed    Type:  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Type of Study: Ambient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | The state of the s |                    |
| Duration: Spot □15-minute □1 hour □24 hour □48 hour □72 hour □Other □   Data Collected: □LAF □LAF max □LAF max □LAF min □LAF 90 □LAF 10 □Low Frequency □Other □   Approximate Study Area (sq mi): 0.79   Number of Monitoring Locations: 1   ID: Location Description: Type:   ML1 At proposed HDD location Handheld and Fixed □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   Bank Handheld and Fixed □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □   ■ □ | Type of Work/Study Performed:   Sound L  | evel Monitoring ✓ Sound Level Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing                |
| Data Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location: ID: Location Description: Type: ML1 At proposed HDD location  Handheld and Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Number of Monitoring Locations:    Monitoring Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmir | LAF90 LAF10 Low Frequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y Other            |
| Monitoring Location:  ID: Location Description:  ML1 At proposed HDD location  Handheld and Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| ID: Location Description:  ML1 At proposed HDD location  Handheld and Fixed  Handheld and Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of Monitoring Locations:          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| ML1 At proposed HDD location  Handheld and Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type:              |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML1 At proposed HDD location             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Handheld and Fixed |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>            |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [▼                 |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [▼                 |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [•                 |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [•                 |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [▼                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [▼                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | See attached Figure for operation        | nal sound model results and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a description      |



#### Identified Sound Level Sources: ID: Sound Levels Description: Type: 1 Existing Stone Handling Operations Line Estimated • Estimated • 2 See Project Notes below for HDD Station $\blacksquare$ Sources • 3 US 67 Line • Estimated 4 Fort Bellefontaine Rd. • Line Estimated 5 Old Jamestown Rd Line • Estimated •

## **Project Notes:**

- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Large Drill Rig @ 110 dBA
- Two Mud Pumps @ 110 dBA
- Three Generators @ 90 dBA
- Separation Plant @ 100 dBA
- 2. Sound level contributions from nearby existing material/rock handling operation (Central Stone) were estimated
- 3. Sound levels from US 67, Fort Bellefontaine Rd, and Old Jamestown Road are estimated based on traffic counts during 15-minute noise surveys and/or conservative estimates based on similar roadways.


## **Results Summary:**



| Site Number:            | Description: Central     | StONE - 11165     | over South      |
|-------------------------|--------------------------|-------------------|-----------------|
| Done By:                |                          |                   | Notes:          |
| Meter:                  |                          | Atmospheric data  | LAFMin: 46.4 dB |
|                         |                          | Wind Speed (mph)  |                 |
| <b>Monitoring Data:</b> | AM Peak Off-Peak PM Peak | 1 55              | LAFMax: 62.8 dB |
| Date                    | 12/6/16                  | 10 mpt ESE        | LAFEQ: 50.2 dB  |
| Start Time:             | 8156                     |                   | LAF90: 48.7 dB  |
| End Time:               | 9:11                     |                   |                 |
| Duration:               | 15 MIN MIN MIN           | <u>Temp. (°F)</u> |                 |
| LAeq:                   | 50.2                     | 39                |                 |
| Traffic Data            | 30.5                     | 01                |                 |
| Roadway                 |                          | Humidity (%)      |                 |
| Direction               |                          |                   |                 |
| Traffic Total           |                          | 73                |                 |
| Cars                    |                          |                   |                 |
| MT                      |                          | Cloud Cover       |                 |
| HT                      |                          |                   |                 |
| Weather Conditions      |                          | 78%               |                 |
| weather conditions      |                          |                   | 1               |
|                         |                          |                   | NORTH           |
| Plan View:              | Dime -                   | 006               |                 |
|                         | > ( / -                  |                   |                 |
| (5)                     |                          |                   |                 |
|                         | M.                       |                   |                 |
| Profile View:           | Inc                      |                   |                 |
|                         |                          |                   |                 |
|                         |                          |                   | $\gamma$        |
|                         |                          |                   |                 |

Central Stone. Missouri Ruck South Site Number: Description: Done By: Notes: Meter: Atmospheric data LAFMin: 34.9 dB Wind Speed (mph) LAFMax: 70.3 dB Monitoring Data: AM Peak Off-Peak PM Peak LAFEQ: 47.3 dB WNW Date 12/6/16 Start Time: 16:30 LAF90: 37.1 dB End Time: 16.45 Temp. (°F) Duration: 15 MIN LAeq: 147.3 42 **Traffic Data** Humidity (%) Roadway Direction Traffic Total Cars MT Cloud Cover HT 60% **Weather Conditions** Site Data: Site Surphase (Alpha): Shielding Factor: Pavment Type: **Calibration Details:** Plan View: NORTH see previous Profile View:







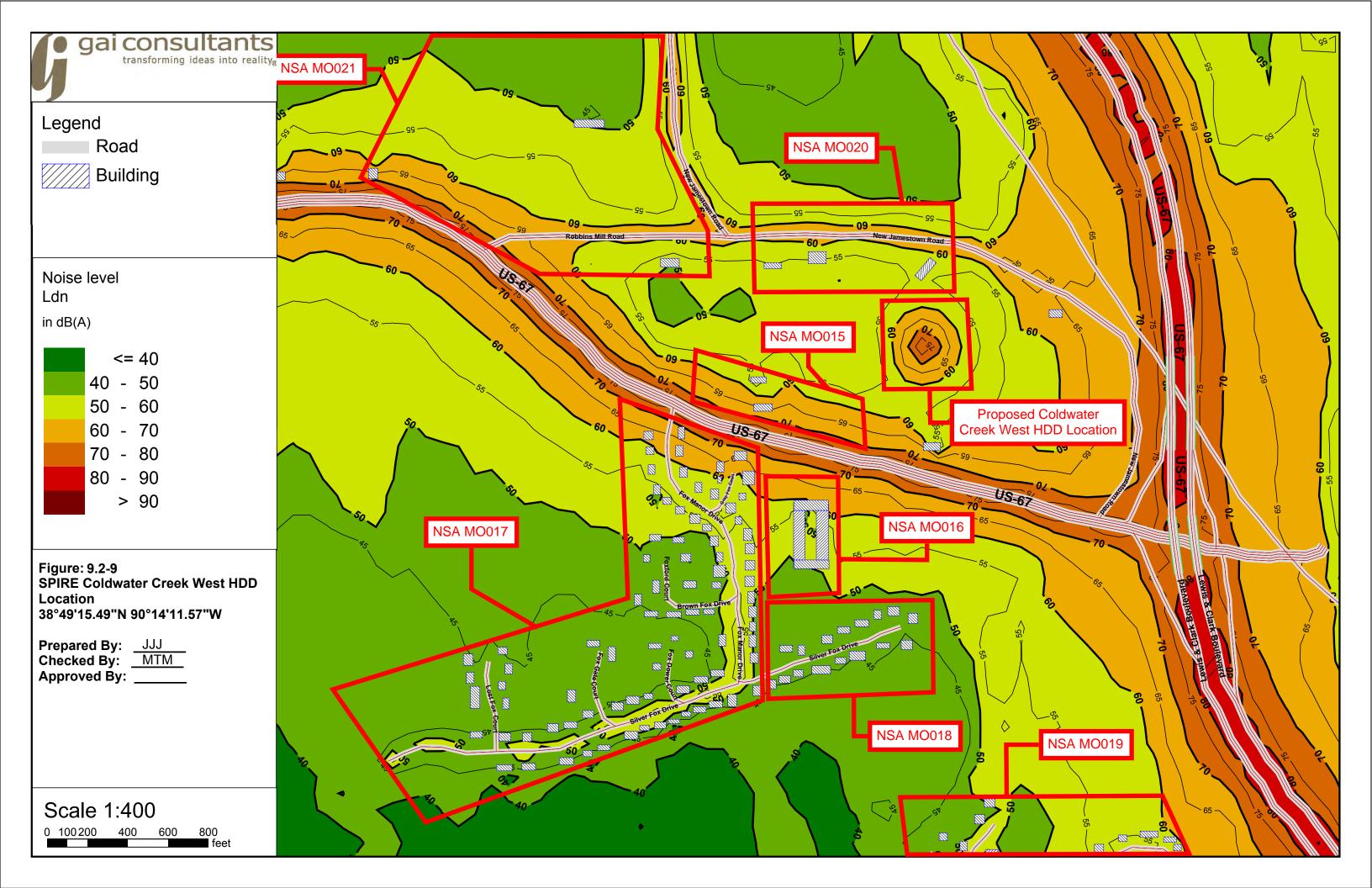
| Project Location: Mississippi River No           | rth HDD      | Proje   | ect Numb   | er:     | C160438.00         |   |
|--------------------------------------------------|--------------|---------|------------|---------|--------------------|---|
| Client: SPIRE                                    | Model Rui    | ın:     | C13        | 32336.0 | 4 -008             |   |
| Field Staff:                                     | Do           | ocume   | ent Orign  | inator: | JJJ                |   |
| ມມ                                               |              |         | Ch         | ecked:  | MTM                |   |
| TL                                               |              |         | Арр        | roved:  | JWW                |   |
|                                                  |              |         |            |         |                    |   |
| Type of Work/Study Performed: ☑ Sound            | Level Monito | oring 🔽 | Sound Lev  | el Mode | ling               |   |
| <b>Type of Study:</b> ☑ Ambient ☑ Construction ☐ |              |         |            |         |                    |   |
| <b>Duration:</b> ☐ Spot ☐ 15-minute ☐ 1 hour ☐   |              |         |            |         | ther               |   |
| Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmin         | n ☑LAF90 [   | ☐LAF1   | LO Low     | Frequen | cy Other           |   |
| Approximate Study Area (sq mi):                  | 0.79         | )       | '          |         |                    |   |
| Number of Monitoring Locations:                  | 1            | L       |            |         |                    |   |
| Monitoring Location:                             |              |         |            |         |                    |   |
| ID: Location Description:                        |              |         |            |         | Type:              |   |
| ML1 In field on adjacent property. S             | Site access  | s denie | ed.        |         | Handheld and Fixed |   |
|                                                  |              |         | <b>.</b>   |         |                    | _ |
|                                                  |              |         |            |         |                    | • |
|                                                  |              |         |            |         |                    | ✓ |
|                                                  |              |         |            |         |                    | • |
|                                                  |              |         |            |         |                    | - |
|                                                  |              |         |            |         |                    | _ |
|                                                  |              |         |            |         |                    | • |
| Description of Surrounding Area (sketch,         | prominent    | t sour  | ces of so  | und, et | c.)                |   |
| See attached Figure for operatio                 | nal sound    | mode    | el results | and ar  | ea description     |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |
|                                                  |              |         |            |         |                    |   |



| Identified | Sound Level Sources:                    |       |  |              |   |
|------------|-----------------------------------------|-------|--|--------------|---|
| ID:        | Description:                            | Type: |  | Sound Levels |   |
| 1          | Bellafontaine Rd.                       | Line  |  | Estimated    | • |
| 2          | See Project Notes below for HDD Station |       |  | Estimated    |   |
|            | Sources                                 |       |  |              |   |
|            |                                         |       |  |              |   |
| 3          | US 67 N/S                               | Line  |  | Estimated    |   |
| 4          | Arrowpoint Dr.                          | Line  |  | Estimated    |   |
| 5          | Vista Ridge Lane and Meadowdale Drive   | Line  |  | Estimated    |   |
| 6          | Cowington Gardens Drive                 | Line  |  | Estimated    |   |
| 7          | Ox Bow Lane and Cathedral Hill Drive    | Line  |  | Estimated    |   |

## **Project Notes:**

- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Large Drill Rig @ 110 dBA
- Two Mud Pumps @ 110 dBA
- Three Generators @ 90 dBA
- Separation Plant @ 100 dBA
- 2. Sound level contributions from all streets and side streets conservatively estimated based on typical sound levels for similar roads.


## **Results Summary:**



| Site Number: 68 Description: MMIII                                                          | 1 68 - 2-28         | 1-17 Morning     |
|---------------------------------------------------------------------------------------------|---------------------|------------------|
| Done By: TMC / JTT                                                                          |                     | Notes:           |
| Meter:                                                                                      | Atmospheric data    |                  |
|                                                                                             | Wind Speed (mph)    | Monter Lucited   |
| Monitoring Data: AM Peak Off-Peak PM Peak                                                   |                     | 1 1011111        |
| Date 2-28-17                                                                                | 2 mph               | in old Ag.       |
| (LST) Start Time: 8:00 A                                                                    |                     | Field, Approx.   |
| (LST) End Time: 8:17 A                                                                      |                     | FICIC.           |
| Duration: 15 MIN MIN MIN                                                                    | Temp. (°F)          | 275 ft from      |
| LAeq: 50.0                                                                                  | 60°F                | h. lie of        |
| Traffic Data                                                                                |                     | property line of |
| Roadway                                                                                     | <u>Humidity (%)</u> | newest house.    |
| Direction                                                                                   | (100)               | 12.              |
| Traffic Total                                                                               | 80%                 |                  |
| Cars                                                                                        |                     | LaFmin - 44.78B  |
| MT                                                                                          | Cloud Cover         | 15 15 18         |
| нт                                                                                          | overcast            | LaFmax - 65.6 dB |
| Weather Conditions                                                                          | CV (                | LOF90 - 47.4 dB  |
| Site Data: Site Surphase (Alpha): Shielding Face Calibration Details:  4:30 pm (E5T) 3-27-1 | 7                   |                  |
| Lalibrater - 119 dB Month                                                                   | 113                 |                  |
| Calibrator - 94 4B Monitor                                                                  | - 9900              |                  |
| Plan View: House                                                                            |                     | NORTH            |
| Approx Ct                                                                                   | IIII Pag            | party line       |
| 7,375 21.                                                                                   |                     | *                |
| l ×                                                                                         |                     |                  |
| monitor T                                                                                   |                     |                  |
| APPY40 Ft.                                                                                  |                     |                  |
|                                                                                             |                     |                  |
| Red Vino                                                                                    | 045e                |                  |
| Profile View:                                                                               |                     |                  |
|                                                                                             |                     |                  |
| monitor Approx.                                                                             | 740 St              |                  |
| J. W. T.                                                                                    |                     |                  |
|                                                                                             |                     | > House          |

| Site Number: <u>68</u>                                | Description: MMIC         | 168 - 2-           | 27-17 Evening        |
|-------------------------------------------------------|---------------------------|--------------------|----------------------|
| Done By: TMC                                          | 1555                      |                    | Notes:               |
| Meter:                                                | <u> </u>                  | Atmospheric data   | - ·                  |
|                                                       |                           | Wind Speed (mph)   | Monitor Located      |
| <b>Monitoring Data:</b>                               | AM Peak Off-Peak PM Peak  |                    | in old Ag.           |
| Date                                                  | 2121117                   | C-10 moh           | 111 010 119.         |
| $(C \circ T)$ Start Time:                             | 41130                     | 5-10 mph           | Field. Approx        |
| $( \angle 5T )$ Start Time: $( \angle 5T )$ End Time: | 4:280                     | 1.17.              | THE IG. TAPPION      |
| Duration:                                             | MIN MIN 75 MIN            | Temp. (°F)         | TIC Ct Gran          |
| LAeq:                                                 | [ [ ] [ ] [ ] [ ]         | 1.10               | 01041                |
| Traffic Data                                          | 47.7                      | 64 F               | property line        |
| Roadway                                               |                           | Humidity (%)       | of host              |
| Direction                                             |                           |                    | of nearest           |
| Traffic Total                                         |                           | 75 %               | house -              |
| Cars                                                  |                           |                    | 3                    |
| MT                                                    |                           | Cloud Cover        | Latin - 35.1 dB      |
| нт                                                    |                           | Suny-Nolar         | 10Fmax-64.0 dB       |
| <b>Weather Conditions</b>                             |                           | Sunny-100004       |                      |
|                                                       |                           |                    | Lat 90 - 39.2 dB     |
| Site Data: Site Surpha                                | se (Alpha): Shielding Fac | tor: Pavment Type: |                      |
| Calibration Details:                                  |                           |                    | Times sossing nearby |
| 4:30 pm                                               |                           | 7                  | From 4:22 - 4:25pm   |
| Calibrator                                            | - 114 15 Moni             | tor - 114dB        | From 4.22 - 4.25pm   |
| Calibratos                                            | - 94 dB Monit             | 01-9488            | /                    |
|                                                       |                           |                    |                      |
| Plan View:                                            | House                     | $\rho$             | NORTH                |
| D                                                     | 11111 Trees 12            | 1711 Proper        | ty line NORTH        |
| 1 -1-                                                 |                           |                    | ' II I               |
|                                                       | Approx 275 ft.            |                    |                      |
|                                                       | "                         |                    |                      |
| 1                                                     | <u></u>                   |                    |                      |
| A                                                     | X <sub>1</sub>            |                    |                      |
|                                                       | nonitor                   | - C+               |                      |
|                                                       | Approx 44                 | 011.               |                      |
|                                                       |                           |                    |                      |
|                                                       | 1 [2.1]                   |                    |                      |
| 10                                                    | Barn                      |                    | ×                    |
| 0.08                                                  |                           | lause              |                      |
| Phol Pinc                                             | <u>L'</u>                 | 120.10             |                      |
| Drofile Views                                         |                           |                    |                      |
| Profile View:                                         |                           |                    |                      |
| Monitor                                               |                           | Aprix 440 Ft       |                      |
| 1.10(11.0)                                            |                           | 170 Ft             |                      |
|                                                       |                           |                    | House                |





| Client: SPIRE Model Run: C132336.04 -009  Field Staff: Document Origininator: JJJ Checked: MTM Approved: JWW  Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot 15-minute 1 hour 48 hour 72 hour Other  Data Collected: Leaq Lafemax Lafemin Lafen Lafen Lafen Lafen Lafen Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location  ID: Location Description: Type:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Tandheld and Fixed  Tope:  Thankled and Fixed  Tope:  Tope:  Tope:  Thankled and Fixed  Tope:  To | Project Location: Mississippi River Nor  | th HDD      | Proje  | ect Number:    | C160438.00       |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|--------|----------------|------------------|---------------|
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot Standy: Another I hour 24 hour 48 hour 72 hour Other  Data Collected: Leeq Lafemax Lafemin Lafe Department Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location  ID: Location Description:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             | n:     | C13233         | 6.04 -009        |               |
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot 15-minute 1 hour 24 hour 48 hour 72 hour Other  Data Collected: LAeq LAFmax LAFmin LAF90 LAF10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location:  ID: Location Description: Type:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Handheld and Fixed  Type:  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field Staff:                             | Do          | cume   | ent Origninato | or: JJJ          |               |
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot Is-minute hour 48 hour 72 hour Other  Data Collected: Apara LAFmax LAFmin LAF90 LAF10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location:  ID: Location Description: Type:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Handheld and Fixed   Type:  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JJJ                                      |             |        | Checke         | ed: MTM          |               |
| Type of Work/Study Performed: Sound Level Monitoring Sound Level Modeling  Type of Study: Ambient Construction Post Construction Operation  Duration: Spot 15-minute 1 hour 24 hour 48 hour 72 hour Other  Data Collected: Laeq Lafmax Lafmin Laf90 Laf10 Low Frequency Other  Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location:  ID: Location Description: Type:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Handheld and Fixed   Type:  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |             |        | Approve        | ed: JWW          |               |
| Type of Study: Ambient Construction Post Construction Operation  Duration: Spot O15-minute 1 hour 24 hour 48 hour 72 hour Other  Data Collected: April Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location: ID: Location Description: Type:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             |        |                |                  |               |
| Duration: Spot □15-minute □1 hour □24 hour □48 hour □72 hour □Other □   Data Collected: □LAF □LAF max □LAF max □LAF min □LAF 90 □LAF 10 □Low Frequency □Other □   Approximate Study Area (sq mi): 0.79   Number of Monitoring Locations: 1   ID: Location Description: Type:   ML1 In right of way along New Jamestown Rd./Robbins Mill Rd Handheld and Fixed □   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   Branch Handheld and Fixed □   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■   ■ ■                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type of Work/Study Performed: ☑ Sound L  | evel Monito | ring 🗸 | Sound Level Mo | odeling          |               |
| Data Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |             |        |                |                  |               |
| Approximate Study Area (sq mi): 0.79  Number of Monitoring Locations: 1  Monitoring Location: ID: Location Description: Type: ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Handheld and Fixed    Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |             |        |                |                  |               |
| Number of Monitoring Locations:    Monitoring Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data Collected: ☑ LAeq ☑ LAFmax ☑ LAFmin | 1 ☑ LAF90 [ | LAF1   | .0 Low Frequ   | uency  Other     |               |
| Monitoring Location:  ID: Location Description:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Handheld and Fixed   Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approximate Study Area (sq mi):          | 0.79        |        |                |                  |               |
| ID: Location Description:  ML1 In right of way along New Jamestown Rd./Robbins Mill Rd  Handheld and Fixed   Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of Monitoring Locations:          | 1           |        | '              | '                |               |
| ML1 In right of way along New Jamestown Rd./Robbins Mill Rd Handheld and Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |             |        |                |                  |               |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID: Location Description:                |             |        |                | Type:            |               |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ML1 In right of way along New Jame       | stown Rd.   | /Robl  | hins Mill Rd   |                  | <b>\</b>      |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | minght of way along item tame            |             | ,      |                |                  | _             |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |        |                |                  | -             |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |        |                |                  | $\rightarrow$ |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |        |                |                  | <b>\</b>      |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |        |                |                  | -             |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |        |                |                  | \             |
| Description of Surrounding Area (sketch, prominent sources of sound, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |             |        |                |                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description of Surrounding Area (sketch  | nrominont   | . cour | sos of sound   | oto \            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See attached Figure for operation        | nal sound   | mode   | el results and | area description |               |



| Identified | Sound Level Sources:                    |       | '            |   |
|------------|-----------------------------------------|-------|--------------|---|
| ID:        | Description:                            | Type: | Sound Levels |   |
| 1          | New Jamestown Road                      | Line  | Estimated    | • |
| 2          | See Project Notes below for HDD Station |       | Estimated    |   |
|            | Sources                                 |       |              |   |
|            |                                         |       |              |   |
| 3          | US 67                                   | Line  | Estimated    |   |
| 4          | Robbins Mill Road                       | Line  | Estimated    | • |
| 5          | Lindbergh Blvd.                         | Line  | Estimated    |   |
| 6          | Fox Manor/Silver Fox Dr.                | Line  | Estimated    |   |
| 7          | Fox Haven Dr.                           | Line  | Estimated    |   |

## **Project Notes:**

- 1. M&R Facility expansion conservatively modeled to include the following significant sources:
- Large Drill Rig @ 110 dBA
- Two Mud Pumps @ 110 dBA
- Three Generators @ 90 dBA
- Separation Plant @ 100 dBA
- 2. Sound level contributions from all streets and side streets conservatively estimated based on typical sound levels for similar roads.

## **Results Summary:**



| 12 month                                           | 7/7//            | 1 2-70 17 m                          |
|----------------------------------------------------|------------------|--------------------------------------|
| Site Number: 67 Description: MMIC                  | 6+ Wes           | 1 J-18-17 Warning                    |
| Done By: TMC / JJJ                                 |                  | Notes:                               |
| Meter: ->                                          | Atmospheric data | Lected @                             |
| Manitarina Data, Lug Jarra Jarra J                 | Wind Speed (mph) | Located a Corner of                  |
| Monitoring Data: AM Peak Off-Peak PM Peak          | 7 6              | Corner or                            |
| Date 2-18-17 (Cot) Start Time: 708a                | doph             | Ver Jamestan Rd                      |
| (CST) End Time: 7:32                               |                  | and Robbins Mill Rel                 |
| Duration: 15 MIN MIN MIN                           | Temp. (°F)       | and kobons Will re                   |
| LAeq: 53.5                                         | A                | Johl Traffic                         |
| Traffic Data                                       | 60°F             | Light Med The                        |
| Roadway                                            | Humidity (%)     | 15010                                |
| Direction T                                        | (T. )            | LaFmin - 48.8 dB<br>LaFmax - 58.9 dB |
| Traffic Total                                      | 80 %             | 10Fmax - 58.9 dD                     |
| Cars                                               |                  | Tat 90 - 51.2 dB                     |
| MT                                                 | Cloud Cover      | Car 10 - 51.0                        |
| нт                                                 | overcast         |                                      |
| Weather Conditions                                 | Outready         |                                      |
|                                                    |                  |                                      |
| Site Data: Site Surphase (Alpha): Shielding Factor | or:Pavment Type: |                                      |
| Calibration Details:                               |                  |                                      |
| 4:30 pm (EST) 2-0                                  | 17-17            | -                                    |
| Calibrates - 114 dB Moni)                          | 11-11400         |                                      |
| Calibrator - 94 als Monito                         | - 94 dB          |                                      |
| Diam Vienn                                         |                  |                                      |
| Plan View:                                         |                  | NORTH                                |
| 1/2                                                |                  |                                      |
| Jedning !                                          |                  |                                      |
| Kar.                                               |                  | <u> </u>                             |
| Jess 1                                             | 1                |                                      |
| 100                                                | X monitor        |                                      |
| 100                                                | 1                |                                      |
|                                                    |                  | 1 1 0-1                              |
| Robbins Mill Rd                                    |                  | New Tamestown Rd                     |
|                                                    | - +              |                                      |
|                                                    |                  | Annsux                               |
| A                                                  | 175 ft House     | Approx<br>40++                       |
|                                                    | 175 77.5         |                                      |
| 90                                                 |                  | House                                |
| Profile View:                                      | ^                |                                      |
| 177                                                | nprox. 175 F     | -t-                                  |
| Approx X F. 1                                      |                  | 7                                    |
|                                                    |                  | House                                |
|                                                    |                  |                                      |

| Site Number: 67 Description: MMI                                                                                                                     | 10 67 h          | lest 2-27-17 Eve     | 211 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-----|
| Done By: TMC / JJJ                                                                                                                                   |                  | Notes:               |     |
| Meter:                                                                                                                                               | Atmospheric data | -                    | 0   |
| 75                                                                                                                                                   | Wind Speed (mph) | Located @            |     |
| Monitoring Data: AM Peak Off-Peak PM Peak                                                                                                            |                  | Located a corner of  |     |
| Date 2-27-17                                                                                                                                         | ( 11) mh         |                      |     |
| (CST) Start Time: 5:180                                                                                                                              | 5-10 mph         |                      |     |
| (CST) End Time: 5 320                                                                                                                                |                  | and Robbins Mill Rd  |     |
|                                                                                                                                                      | - (0=)           | A CINE FORMS FILLING |     |
| Duration: MIN MIN 15 MIN                                                                                                                             | Temp. (°F)       | 11176                |     |
| LAeq: 56.6                                                                                                                                           | 64°+             | Light Traffic        |     |
| Traffic Data                                                                                                                                         | 011              |                      |     |
| Roadway                                                                                                                                              | Humidity (%)     |                      |     |
| Direction                                                                                                                                            |                  | 15 17918             |     |
| Traffic Total                                                                                                                                        | 75 %             | Latin - 47.9 dB      |     |
|                                                                                                                                                      | /                | Vatmax - 77.8 dB     |     |
| Cars                                                                                                                                                 | Cloud Cover      | (at max - +1.000)    |     |
| MT                                                                                                                                                   | / /              | Lat 90 - 50.1 dB     |     |
|                                                                                                                                                      | Sumy-No Carer    | 00.140               |     |
| Weather Conditions                                                                                                                                   |                  | J                    |     |
| Site Data: Site Surphase (Alpha): Shielding Face  Calibration Details:  4:30 pm (EST) 2-27-  Calibrator - 114 dB Monitor  Calibrator - 94 dB Monitor | 17               |                      |     |
| Plan View:                                                                                                                                           |                  | NORTH                |     |
| John Service Land                                                                                                                                    | monitor          |                      |     |
| 011-01-01                                                                                                                                            |                  |                      |     |
| Robbins Mill Rd                                                                                                                                      | New 5            | Tomestown Rd         |     |
|                                                                                                                                                      | <del></del>      |                      |     |
|                                                                                                                                                      |                  |                      |     |
| Anacas                                                                                                                                               | v \              |                      |     |
| Approx                                                                                                                                               | -Gy House        | < > 40 Ft            |     |
| 175                                                                                                                                                  | -ft & rouse      | 7 70                 |     |
|                                                                                                                                                      |                  | - House              |     |
| Profile View:                                                                                                                                        |                  | 1 100000             |     |
| Profile View:                                                                                                                                        | Approx 175       | Ft                   |     |
|                                                                                                                                                      | MARCHERINS       |                      |     |
| Approx 8 FI-                                                                                                                                         |                  | House                |     |
| "                                                                                                                                                    |                  |                      |     |
|                                                                                                                                                      |                  |                      |     |

# spire 5

APPENDIX 9-E
Fugitive Dust Control Plan